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Abstract
We study the classic mathematical economics problem of Bayesian mechanism design
where a principal aims to optimize an objective, typically expected revenue or wel-
fare, when allocating resources to self-interested agents with preferences drawn from
a known distribution. In single-parameter settings where each agent’s preference
is given by a single private value, this problem is solved (Myerson, 1981). Unfor-
tunately, these single-parameter optimal mechanisms are impractical and rarely
employed (Ausubel and Milgrom, 2006), and furthermore the underlying economic
theory fails to generalize to the important, relevant, and unsolved multi-parameter
setting, where each agent’s preferences require multiple values to describe (Manelli
and Vincent, 2007).

The main theme of this work is that we can solve multi-parameter mechanism
design problems by analogy to properly chosen single-parameter ones. In order
to implement this approach, however, the mechanisms we design must be robust
to changes in the setting they are used in. Thus, in contrast to the theory of op-
timal mechanisms, we develop a theory of sequential posted-price mechanisms,
where agents are offered take-it-or-leave-it prices in sequence. We prove that these
mechanisms are approximately optimal in single-parameter settings. Further, these
posted-price mechanisms avoid many of the properties of optimal mechanisms that
make the latter impractical, allowing them to generalize naturally to multi-parameter
settings.

We consider two types of multi-parameter settings in this thesis. First, we con-
sider settings with multiple services and unit-demand agents. In such settings
agents value each service differently, but desire at most one. In particular, we
achieve constant-factor approximations for the multi-parameter multi-unit revenue-
maximizing auction problem, and bound the economic benefit of randomization in
such settings. Second, we consider settings where agents face budget constraints.
An agent with a hard budget constraint cannot make payments exceeding it, even
when the agent’s value for service greatly exceeds the budget. We show how un-
constrained Bayesian mechanism design can guide the design of mechanisms for
budget-constrained agents, and achieve approximations to both revenue and welfare.
Some of our results extend to settings where budgets are private information of the
agents.
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1 Introduction
Over the history of computing, the very nature of how, when, and why we compute
has changed dramatically. While computing began as a costly and centralized
resource, reserved for important optimization tasks, the advent of smartphones
and cloud computing has made it a near-constantly-available part of daily life for
many people. Whereas in the early days of computer hardware, processing time
was often reserved for business or mission-critical optimization problems, in the
modern day most people think little of the having the ability to check the quickest
route to a coffee shop on a smartphone they can carry in their pocket. Additionally,
the frontier of tractability for large-scale optimization problems has also greatly
expanded. This fundamental shift in the scale and nature of how we compute has
led to the examination both of what role computation plays in other fields, and how
other fields can help us understand the role computation plays in our lives. The
topic of this thesis lies in the area of algorithmic game theory, at the intersection of
the fields of computer science and economics.

On one hand, as computing resources become ever more ubiquitous and dis-
tributed, questions of coordination and resource allocation become ever more impor-
tant. The reliability of collaborative efforts such as Wikipedia or Yelp for acquiring
information and guiding decision critically depends on the ability to identify and
filter out any harmful behaviors that can arise among users. Another example is
trying to understand how shared resources such as network bandwidth and cloud
computing services can be allocated: how should we sell such services to satisfy
user demands, when those demands are themselves shaped by our choice of a
selling strategy? Questions of this sort are both natural and important as we face
environments where informational and computing resources are shared among
self-interested agents, and these questions are a natural fit for game theory.

On the other hand, as the availability of computing power increases and the
cost decreases, it becomes important to understand what role computation plays
in economic settings. When considering settings such as complex markets or spec-
trum auctions, the underlying optimization problem facing any sort of coordinator
becomes complicated, and understanding how algorithmic and computational com-
plexity considerations impact the optimization in question is critical. As the core
optimization problem becomes more difficult, so too do the individual optimization
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problems participants must solve if they are to take actions that give them their best
possible outcomes; if we want to predict what actions individuals will take, we must
understand their ability to solve the optimization problem they face as well. Further,
as computer science looks at economic mechanisms to solve allocation problems
such as selling Internet advertising or cloud resources, many new use cases with
novel aspects arise. Thus, this change in how computing impacts our daily lives
also impacts how we think about game theory.

Within the area of algorithmic game theory, the particular focus of this thesis is
on problems in mechanism design. In particular, we study approximation in the
context of Bayesian multi-parameter mechanism design settings. Before describing
our results in Section 1.2, we first make each part of this work’s title precise.

1.1 Approximation in Bayesian multi-parameter
mechanism design

In this section, we examine the topic of this thesis, approximation in Bayesian
multi-parameter mechanism design in more detail. Specifically, we describe each
component of the topic in turn.

Mechanism design. Mechanism design has a similar core goal to that of algorithm
design: an optimizer wishes to map inputs to outputs in order to achieve some
global objective. For example, we might want to find a max-weight matching in a
bipartite graph. Typically, the goal in algorithm design is to find a good solution
in a computationally efficient manner. In mechanism design, however, the pieces
of the input are private information held by a collection of agents; these agents
each have preferences over the outcomes, and may lie about the information they
hold if they believe it will produce an outcome that is better for them. So, in the
matching example, we might have that each edge is owned by a different individual,
who experiences some benefit (equal to the weight) for having their edge included
in the matching. A designer who wants to maximize the total value received by
all individuals (i.e. maximize social welfare) has the same goal as the algorithm
designer in our original problem statement. Note, however, that as currently phrased,
we cannot hope to solve our problem optimally – every agent should simply claim
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the weight on their edge is the largest number they can think of, since they only
care about getting their own edge selected.

In order to address this issue, mechanism design gives the designer extra power:
in addition to specifying an outcome, the designer also specifies monetary transfers
to or from each agent. For example, the mechanism designer could specify that they
will select a maximum-weight matching, but will charge each individual included
in the matching an amount equal to the weight they reported for their edge. While
this will remove the issue of agents reporting absurdly high values – since they
would be required to make absurdly high payments – it creates a new incentive to
lie, namely to under-report values in the hopes of reducing the amount paid. The
goal of mechanism design is to find mappings from inputs to (outcome, payment)
pairs in order to achieve some objective in the presence of individuals who act in
their own best interest. A mechanism design problem has several key features:

• the objective of the designer, for example social welfare (total value received by
individuals), revenue (total payments received by the mechanism), or fairness;

• the feasibility constraints faced by the designer, both in terms of what outcomes
are possible and what payments are possible;

• how individuals interact with the mechanism; and

• how we can predict the behavior of individuals, and therefore the outcome of
running the mechanism.

The last two points are especially important. If we want to be able to predict outcomes
of a mechanism, we must be able to understand how individuals will interact with it.
In this work, we focus on direct revelation mechanisms where individuals interact
with the mechanism by making reports in the form of values; further, we focus on
mechanisms that are incentive compatible and individually rational (this is, in fact,
without loss of generality by the Revelation Principle; see Nisan (2007) for details).
The first says that every individual has a dominant strategy of being truthful about
their value, while the second says that participating in the mechanism is no worse
for any individual than not participating. An action is said to constitute a dominant
strategy if there is no situation where, considering the actions of others, it is strictly
better to deviate and take another action. Thus, it is quite robust – it says that an
individual can settle on this strategy based only on their own information and not
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regret their choice later, once the actions of others are revealed. While we relax the
former in some cases, we still rely on dominant strategies to characterize individual
behavior.

Multi-parameter. In the context of mechanism design, whether a setting is multi-
parameter or single-parameter is determined by the underlying mathematical com-
plexity of participants’ preferences over outcomes. Formally, an agent’s type specifies
what value they place on every possible outcome; however, we can typically find a
description that is far more compact than explicitly listing the value for each possi-
ble outcome. For example, consider how an agent might value the outcomes in a
single-item auction. In the simplest case, the agent may simply care whether or not
they win the item, receiving some fixed value from winning it and no value from
losing. Since we can summarize such an agent’s preferences with just the value the
agent places on winning, we term the agent single-parameter. In a more complicated
scenario, an agent may further differentiate outcomes. Perhaps if the agent does
not win, they care whether or not the item was won by a friend of theirs; they may
obtain some value from knowing the winner. For such an agent, we cannot hope to
summarize their preferences over outcomes with a single number, and so would
describe such an agent as multi-parameter.

In this work, our focus is on understanding multi-parameter settings. While
single-parameter settings are generally well-understood, there appears to be a fun-
damental difficulty in extending techniques from single-parameter settings to multi-
parameter ones. Some success has been seen in the case of low-dimensional cases,
but many of these results depend on a transformation of the input space so that
either it becomes a single-parameter problem, or it decomposes nicely into two
independent single-parameter problems. While multi-parameter settings have typi-
cally resisted attempts to characterize optimal solutions, we believe that by building
analogies to appropriate single-parameter settings, we can gain insight into the
structure of solutions that are nearly optimal.

Bayesian. When designing either algorithms or mechanisms, a critical question
is how to anticipate the performance of a proposed solution. Typically, our goal
is to design a solution that is robust enough to handle a wide variety of different
problem instances, often in the face of uncertainty about which instances will be
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seen in practice. After all, if we only want to solve a single, known instance of a
problem, it is often easier and cheaper to just solve that particular instance in an
ad hoc fashion. A natural question, then, is how we measure the performance of a
solution when we do not know the instances it will be run on in advance, and how
much robustness to future uncertainty it will have. Historically, this question has
been approached quite differently by the fields of economics and computer science.

The field of computer science has long focused on worst-case analysis, which
seeks performance guarantees that hold for every possible instance, or every possible
instance in some natural class of inputs. While such a guarantee is incredibly robust
– we need no information about the input instances we will see – it is often hard to
achieve such a strong guarantee. In economics, however, it is common to work in a
Bayesian setting. In such a setting, the goal is not to ensure an outcome with certain
qualities for every possible input, but instead to achieve those qualities on average.
In particular, in a Bayesian setting we assume that we face an instance that is drawn
from a known distribution, and our performance is measured in expectation over
the distribution. Furthermore, we assume that we know the distribution in advance,
and can tune our solution to take said distribution into account.

While it is clear that a Bayesian setting gives the designer extra power, an impor-
tant point to note is that in the context of mechanism design it may be impossible
to even come up with a performance benchmark without such an assumption. For
many mechanism design objectives, such as revenue, there is no single well-defined
optimal mechanism we can compare against when seeking a worst-case guarantee.
This arises because truthfulness constraints typically bind across possible inputs,
in the sense that the outcome chosen for one input instance of a problem places
constraints on the outcomes that can be chosen for other input instances. This means
the mechanism designer is frequently forced to make tradeoffs in performance be-
tween inputs, that is, it is often the case that one cannot increase performance on a
particular input without decreasing performance on some other inputs. This makes
worst-case benchmarks unrealistic: any mechanism a designer might propose will
inevitably be outperformed on a given input instance by a mechanism that optimizes
for that particular input at the cost of poor performance on all other inputs. This
hints at the core issue, namely that since the designer must make performance
tradeoffs between input instances, there is no way to guarantee good performance
overall while remaining entirely oblivious to what inputs are likely to occur. In
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fact, without such information, even the idea of an optimal mechanism becomes
ill-defined. A Bayesian assumption on inputs provides a natural resolution to this
problem. When inputs are drawn according to a (known) distribution, the perfor-
mance of a mechanism can be measured by its expected performance under that
distribution, and the optimal mechanism becomes a well-defined benchmark that
gives a clear measure of performance for any proposed mechanism.

Approximation. The theory of approximation in the field of computer science
has arisen as a response to the fact that many important, natural problems have
been shown to be computationally hard to optimize exactly. In an approximation
algorithm, computational efficiency is traded for quality of solution: an algorithm
is said to be an α-approximation (for some α > 1) for a problem if it guarantees a
solution within an α-factor of optimal for every instance of the problem. Formally,
this means that if we let ALG(I) and OPT(I) denote the objectives values of an
algorithm’s solution and the optimal solution for an instance I of a problem, then
we say that ALG provides an α-approximation if we have that

max
I

(
OPT(I)
ALG(I)

)
6 α or max

I

(
ALG(I)

OPT(I)

)
6 α,

when the problem is a maximization or minimization problem, respectively, and
I varies over all possible instances of the problem. The goal is to achieve the best
possible tradeoff between improvements in tractability or runtime and losses in the
objective value; for example, providing a polynomial-time constant-approximation
for a problem where exact optimization is not believed to be polynomial-time solv-
able is typically considered a good result when the constant is small.

In the context of Bayesian settings, where the instance I is drawn from a (known)
distribution, we measure the performance of an algorithm as the ratio of expec-
tations rather than the expectation of the ratio, that is we say ALG provides an
α-approximation if

EI[OPT(I)]
EI[ALG(I)]

6 α or EI[ALG(I)]

EI[OPT(I)]
6 α

when the problem is a maximization or minimization problem, respectively.
One natural criticism of approximation theory is that in practical settings, even
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losing half of the optimal objective value might be intolerable. It is important to
note, however, that

• since the guarantee must apply for every problem instance I, it may be rea-
sonable to hope that, in fact, for practical instances the performance is much
closer to optimal;

• when developing ad hoc heuristics for a problem, approximation algorithms
can provide a principled baseline from which to start, since unlike an arbitrarily
chosen starting point we have some guarantee that they provide reasonable
answers; and

• most importantly, a good approximation algorithm gives insight into the struc-
ture that both occurs in relatively good solutions and can be recognized in a
computationally efficient manner, thus guiding the development of specialized
algorithms for practical settings.

Thus, a key aspect of approximation algorithms is that even when such an algorithm
does not promise a practical performance guarantee, it can provide critical insight
into developing algorithms that do provide good performance in practical settings.

1.2 Contributions

Our goal in this work is to gain insight into the structure of near-optimal mechanisms
for multi-parameter settings through the lens of approximation. While extending
techniques for optimal mechanism design from single-parameter settings to multi-
parameter ones appears to be challenging or even impossible in general, we believe
that single-parameter mechanism design can give strong insight into the structure of
multi-parameter mechanisms. We propose that while single-parameter techniques
may not immediately yield mechanisms that are exactly optimal for multi-parameter
settings, that they can help us get close to this goal and design mechanisms that are
nearly optimal. Currently, the design of optimal mechanisms for multi-parameter
settings seems largely intractable, with only sparse successes (especially when
compared to results in single-parameter settings). Thus, it is very appealing to find a
way to leverage our understanding of single-parameter mechanism design in order
to gain insight into the structure of good mechanisms for multi-parameter settings.
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The main theme of our results in this work is that we can understand how to
design mechanisms for a multi-parameter setting by drawing an analogy to a related
single-parameter setting. At a high level, our goal is to solve a multi-parameter
problem by deriving a single-parameter problem from it, leveraging the many
mechanism design techniques at our disposal in single-parameter settings, and then
using the mechanism we design for the single-parameter setting to generate a good
mechanism for the original multi-parameter setting. Our claim is that by carefully
aligning a single-parameter setting with a given multi-parameter one, we can find
mechanisms that approximate the optimal revenue in both.

As we shall see, however, both directions of the analogy in such a result require
care: picking the correct single-parameter setting is critical since it must capture
the essential structure of the multi-parameter instance; furthermore, we may need
to impose extra constraints or design criteria in the single-parameter setting if we
want the analogy to allow us to translate mechanisms from the single-parameter
setting back to the multi-parameter one. Failing to adequately address either of
these issues can lead to either poor approximation ratios, or a complete breakdown
of the desired analogy. In the remaining chapters of this work, we both demonstrate
single-parameter mechanisms that achieve relevant robustness properties, and show
how to implement this approach in several multi-dimensional settings. We briefly
sketch the focus of each chapter below.

Chapter 3: Sequential pricings for single-parameter settings. In this chapter, we
focus on single-parameter mechanism design problems. While designing optimal
mechanisms for both welfare and revenue is well-understood for single-parameter
settings, we study a class of mechanisms that trade optimality (in terms of the objec-
tive) for other desirable properties. In particular, we focus on a class of mechanisms
called sequential posted pricings. Such mechanisms approach agents one-by-one
in turn, making each agent a take-it-or-leave-it offer of service at a (pre-computed)
price. We consider settings both where the order of offers is in control of the posted-
pricing’s designer and settings where the designer is oblivious to the order agents
will arrive in; we denote these variants of sequential posted pricings as SPMs and
OPMs, respectively.

What posted-price mechanisms lose in their objective values, they make up for
with several other desirable properties. In particular, they are both easy for the
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designer to run, and easy for the agents to understand. Furthermore, their simple
structure makes them extremely robust to collusion. And as we show, while such
mechanisms do not achieve exact optimality, we are able to give strong approxima-
tion guarantees for a variety of feasibility constraints. Our results are summarized
in Table 1.1.

Chapter 4: Multi-service settings with unit-demand agents. In this chapter, we
give our first reduction from a multi-parameter setting to a single-parameter one. We
focus on multi-service settings with unit-demand agents. In such a setting, a single
seller has several services or items for sale, and they are serving a collection of unit-
demand agents. Such an agent may be interested in several different options, but
only wants to be allocated at most one of them: for example, think of an individual
purchasing a television set, a car, or a plane ticket. Even though each agent only
wants a single service, the fact that they can value different options at differing levels
means that the setting is fundamentally multi-parameter.

We show, however, that we can build an analogy to a specific single-parameter
setting. In particular, we show that we can relate each agent in our setting to a
collection of representatives, one per service, who represent the agent’s interest in the
corresponding service. By assuming that the representatives for a particular agent
act independently of (and possibly to the detriment of) each other, we get a standard
single-parameter setting. Furthermore, the competition between representatives
can only increase revenue, and as long as we require strong properties of collusion-
robustness of the mechanisms we design for the single-parameter setting, they can
be easily translated back to our original multi-parameter setting. We summarize
our results for this setting in Table 1.2.

Chapter 5: The power of randomization in multi-service settings. In this chapter,
we examine the power of randomization for multi-service settings with unit-demand
agents. In single-parameter settings, randomization gives the mechanism designer
no extra power – the revenue-optimal mechanism is, in fact, deterministic. In the
multi-parameter settings we consider in Chapters 4 and 5, however, this no longer
holds: even very simple examples give a gap in revenue between randomized and
deterministic mechanisms (see the introduction to Chapter 5 for a concrete example).

In Chapter 4, we saw how to build an analogy between multi-service settings
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with unit-demand agents, and carefully chosen single-parameter settings. Unfor-
tunately, while that reduction did produce deterministic mechanisms, it relied on
an upper bound that only works for the optimal deterministic mechanism for the
multi-parameter settings we considered. In particular, it crucially relied on the ob-
servation that since different representatives capture an agent’s interest in different
items, we could only increase revenue by letting them compete with each other.
Unfortunately, this intuition only holds for deterministic mechanisms. The key issue
is this: when allocations are deterministic, a higher value for one item can only make
it less likely other items are allocated; when allocations can mix multiple items,
however, a higher value for one item may make an agent interested in mixtures that
happen to give higher allocations for both that item and other items at the same time.
In other words, when an agent is forced to choose between items, they compete for
attention, but when mixtures of the items are possible it can introduce synergies
between those items. We show, however, that with proper modifications the same
analogy can also allow us to achieve approximations to the optimal randomized
mechanism; we summarize our results in Table 1.3.

Chapter 6: Settings with budget-constrained agents. In this chapter, we consider
the problem of designing mechanisms for agents who are budget-constrained. The
amount such an agent can and will pay for service is based both on how much they
value having the service, and on how much money they have available to spend on
the service. To get intuition for such settings, consider how a company might decide
whether or not to invest in a project or significant capital purchase: when deciding
whether or not to make the investment, they will weigh both what resources they can
spare, and how much projected benefit the investment will produce. Note that both
place a limit on how much cost the company can or will accept for the investment,
but do so for very different reasons.

In this chapter, our goal is to understand how to design mechanisms for settings
where agents face such absolute budget constraints; we consider the revenue and
welfare objectives, both in settings where the agents’ budget constraints are public
common knowledge, and in settings where budget constraints are part of an agent’s
private information. As we see, budget constraints have a significant impact on the
designer’s problem. Once again, however, we will see that we can solve our multi-
parameter problem by proper analogy to a single-parameter setting. We summarize
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some of our results in Table 1.4.

1.3 Related works

Single-parameter mechanism design. Myerson (1981) was the first to character-
ize (revenue) optimal single-parameter mechanisms. Unfortunately, the optimal
mechanism is frequently quite complicated, and rarely implemented in practice.
The question of whether simple mechanisms can achieve near-optimal revenue was
considered recently by Hartline and Roughgarden (2009). Except for their result on
single-item auctions with anonymous reserve prices, their VCG-based mechanisms
are likely to suffer the same impracticality criticisms as the optimal mechanism. The
essay “The Lovely but Lonely Vickrey Auction” by Ausubel and Milgrom (2006)
discusses why this is the case. As a consequence of the near-optimality of sequential
posted prices, we answer one of their open questions in the positive, namely, that
the gap between the revenue optimal mechanism and a VCG mechanism with ap-
propriate reserve prices is a constant (i.e., 2) in matroid settings but with arbitrary
valuation distributions. This bound matches their result for regular distributions.

Sequential posted price mechanisms have been considered previously in single-
dimensional settings. Sandholm and Gilpin (2006) show experimentally that these
mechanisms compare favorably to Myerson’s optimal mechanisms. Blumrosen and
Holenstein (2008) show how to compute the optimal posted prices in the special
case where agents’ values are distributed identically, and also show that in this case
the revenue of these mechanisms approaches the optimal revenue asymptotically.
Several papers study revenue maximization through online posted pricings in the
context of adversarial values, albeit in the simpler context of multi-unit auctions
(Blum et al., 2004; Kleinberg and Leighton, 2003; Blum and Hartline, 2005).

Multi-service settings. Revenue-optimal mechanisms in multi-parameter settings
are poorly understood. Following Myerson’s characterization (1981) of optimal
single-parameter mechanisms, there were a number of attempts to obtain simple
characterizations of optimal mechanisms in the multi-parameter setting (McAfee
and McMillan, 1988; Rochet and Chone, 1998; Manelli and Vincent, 2007), how-
ever no general-purpose characterization of such mechanisms is known (Manelli
and Vincent, 2007). For further work in economics on optimal multi-dimensional
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mechanism design, see Manelli and Vincent (2007) and references therein. For
further work in computer science on multi-dimensional pricing for a single agent,
see Chawla et al. (2007) and references therein. Our single-agent setting is most
closely related to the work of Chawla et al. (2007) who gave a 3-approximation to the
optimal deterministic mechanism for single-agent product-distribution instances,
and builds upon techniques developed in that work. We extend the settings in that
work to multiple agents and improve their approximation for a single agent from 3
to 2.

The power of randomness. Randomness is a useful resource in mechanism design.
In settings involving uncertainty, it allows the designer to hedge against adversarial
input: in prior-free mechanism design where the designer has no information about
buyers’ values, (anonymous) deterministic mechanisms provably cannot obtain any
guarantees on revenue and randomness is crucial (see, e.g., Hartline and Karlin,
2007, and references therein). Randomness is also useful when computation is
a costly resource and the underlying optimization problem is computationally
intractable (e.g. Dobzinski and Dughmi, 2009; Dughmi and Roughgarden, 2010). In
the settings that we consider, neither of these effects are present: the designer knows
the distribution from which agent types are drawn and we ignore computational
issues. In our settings randomness helps for purely economic reasons—it gives the
seller more latitude to price discriminate among buyers with different preferences.

Riley and Zeckhauser (1983) were the first to study the question of whether
lotteries offer more revenue than item pricing; they showed that for a variety of
single-parameter settings the optimal mechanism is deterministic. Subsequently
Thanassoulis (2004) noted that there exist multi-parameter instances with valuations
drawn from product distributions where randomness helps increase the revenue
by about 8-10%. Manelli and Vincent (2006) and Pavlov (2006) presented other
examples with small gaps. Briest et al. (2010) were the first to uncover the extent
of the benefit of randomization, as well as to study the hardness of finding the
optimal randomized mechanism in multi-parameter settings. They showed that
lottery pricings can be arbitrarily better than item pricings in terms of revenue even
for the case of 4 items offered to a single agent.

Our mechanism design setting with unit-demand agents is closely related to the
standard setting for envy-free pricing problems considered in literature (Guruswami
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et al., 2005; Balcan and Blum, 2006; Balcan et al., 2008; Briest, 2006; Chawla et al., 2007);
those works study the single-agent problem with a correlated value distribution
and aim to approximate the optimal deterministic mechanism (item pricing).

Settings with budgets. Several works in economics have studied characterizations
of optimal BIC IIR budget-feasible mechanisms (e.g., Pai and Vohra, 2008; Laffont
and Robert, 1996; Che and Gale, 2000; Maskin, 2000). However, these works are
generally weak in the kinds of settings they consider (typically just single-item
auctions) and the kinds of value distributions they allow1. Laffont and Robert
(1996) considered single item settings where bidders have a private value and public
common budget. Che and Gale (2000) considered the setting with a single item and
a single buyer, but allowed both the value and the budget to be private. Pai and
Vohra (2008) gave a more general result in which they designed an optimal auction
for a single item and multiple buyers with private i.i.d. values and private budgets.

Bhattacharya et al. (2010) were the first to study settings beyond single-item
auctions and focused on revenue maximization. They considered a setting with het-
erogeneous items and additive values, and exhibited a (large) constant factor DSIC
approximation mechanism as well as an all-pay auction which admits truthtelling
as a BNE and in that BNE obtains a 4-approximation. However, these results re-
quired the value distributions to satisfy the MHR condition. The mechanisms are
LP-based. In contrast most of our mechanisms are easy to compute, work for general
distributions, enforce EPIR, and achieve small approximation factors.

In prior-free settings few results are known for revenue maximization. Borgs
et al. (2005) looked at multi-unit auctions for homogeneous goods where agents
have private values and budgets and considered worst case competitive ratio (see
also Abrams, 2006). They designed a mechanism based on random sampling that
maximizes revenue when the number of bidders is large.

Social welfare maximization has also been considered under budget constraints.
Maskin (2000) considered the setting of a single item and multiple buyers with public
budgets. He defined and showed how to compute the constrained efficient mech-
anism, the truthful feasible mechanism under budget constraints that maximizes
the expected social welfare (however, the result holds only for some distribution

1E.g., Pai and Vohra (2008) and Maskin (2000) make the assumption that value distributions have
a monotone hazard rate as well as a nondecreasing density function, unnatural conditions that few
distributions satisfy simultaneously.
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functions (Pai and Vohra, 2008)). In prior-free settings for multi unit homogeneous
items, Dobzinski et al. (2008) studied Pareto efficient DSIC mechanisms with budget
constraints. They showed that if the budgets are private there is no Pareto optimal
incentive compatible mechanism; for public budgets they showed that there exists a
unique mechanism based on the clinching auction. Chen et al. (2010) considered a
setting with multiple goods and unit demand buyers and showed how to compute
competitive prices that enforce truthfulness under budget constraints if such prices
exist. Finally, the work of Alaei et al. (2010) stands out in their study of “soft” budgets
constraints, where buyers pay an increasing interest rate for payments made above
their budgets. They showed how to exactly compute the smallest competitive prices
in this setting that result in an incentive compatible mechanism with an outcome in
the core.

Relevant Techniques. Our setting of sequential posted pricing with a matroid
constraint is very closely related to the so-called matroid secretary problem (Babaioff
et al., 2007, 2009; Korula and Pál, 2009), but there are two important differences:
(a) they assume that agents’ values are adversarial, whereas in our setting they are
drawn from known distributions, and (b) in their setting agents arrive in random
order, whereas we consider optimized and adversarial orderings. Some of our
results are reminiscent of that work, but our techniques are necessarily different.

Finally, our results for OPMs in the multi-unit auction setting are based on work
on prophet inequalities from optimal stopping theory. While that work applies
directly to the analysis of OPMs in the single-item auction setting, we show that it
extends to k-unit auctions with no loss in approximation factor.

Further work. Some of these results have been improved upon by Yan (2011) and
Alaei (2011). Devanur et al. (2011) and Roughgarden et al. (2012) extend these ap-
proaches to give “prior-independent” multi-item auctions for unit-demand agents;
these auctions give constant approximations to the (prior-dependent) revenue op-
timal auction. Kleinberg and Weinberg (2012) extend the prophet inequalities to
matroids, and achieve a constant approximation for general matroids via an adap-
tive posted-pricing mechanism for which truthful reporting is a dominant strategy.
Recently, a series of papers (Cai and Daskalakis, 2011; Daskalakis and Weinberg,
2012; Cai et al., 2012) presented a different approach for computationally finding
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arbitrarily good approximations to the optimal multi-item auction for agents with
unit-demand or additive values.

1.4 Bibliographic notes

The work presented in this thesis is based on the following joint works:

• The results in Chapters 3 and 4 are based on joint work with Shuchi Chawla, Ja-
son Hartline, and Balasubramanian Sivan, previously appearing in STOC 2010
as “Multi-parameter mechanism design and sequential posted pricing”(see
Chawla et al., 2010);

• The results in Chapter 5 are based on joint work with Shuchi Chawla and
Balasubramanian Sivan, previously appearing in EC 2010 and in Games and
Economic Behavior as “The power of randomness in Bayesian optimal mecha-
nism design”(see Chawla et al., 2012); and

• The results in Chapter 6 are based on joint work with Shuchi Chawla and
Azarakhsh Malekian, previously appearing in EC 2011 as “Bayesian mecha-
nism design for budget-constrained agents”(see Chawla et al., 2011).
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Feasibility constraint S Type of posted pricing approximation
Uniform matroid, Partition matroid OPM 2
Graphical matroid OPM 3
General matroid SPM 2

Table 1.1: A selection of approximation factors for single-dimensional settings
through posted pricings

Feasibility constraint S Solution concept approximation
Intersection of two part. matroids DSIC 5.83
Matching with i.i.d. agents DSIC 2e/(e− 1) ≈ 3.17
Graphical matroid ∩ partition matroid DSIC 7.47
Intersection of two matroids PDSE 8

Table 1.2: A selection of approximation factors for multi-dimensional unit-demand
settings.

Feasibility constraint S Solution concept approximation
Single agent DSIC 4
Multi-item multi-agent auction DSIC 29.15
General matroid ∩ unit-demand constraint PDSE 40

Table 1.3: A selection of approximation factors between deterministic and random-
ized mechanisms for multi-dimensional unit-demand settings.

Feasibility constraint S objective budget approximation
General revenue public 2
Downwards-closed revenue private 3(1 + e)

General welfare private 2(1 + e)

Table 1.4: A selection of approximation factors for single-service settings with
budget-constrained agents.
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2 Definitions and notations
2.1 Bayesian settings for mechanism design

In this section, we give formal definitions for each type of mechanism design instance
we consider throughout this work. In all of these settings, a seller offers one or
more services to a collection of agents, who place (possibly different) values on the
services they might receive. We focus on Bayesian settings, where the seller has
distributional information about the agents’ values, and wants to choose feasible
assignments of services to agents in order to maximize some prespecified objective
in expectation with respect to these distributions. At a high level, for every setting
we consider, an instance is specified by four characteristics:

• the set of agents interested in receiving service;

• the set of services the seller can provide;

• a description of how the agents’ values are distributed; and

• a description of what allocations of services to agents are simultaneously
feasible.

We now make this characterization formal for the various settings considered in this
thesis; at the end of the section, we consider the last two of these criteria in more
detail.

BSMD: Bayesian Single-parameter Mechanism Design problem. The Bayesian
single-parameter mechanism design problem (BSMD for short) is an abstraction of
the setting where each agent has a single private value for any “good outcome” of
the mechanism. In this setting, the mechanism can produce a good outcome for
agent i in which case their valuation is vi, or a bad outcome in which case their
valuation is zero. We denote an instance of BSMD by the tuple I = (I, S, F), where:

• I = [n] is a set of n agents.

• S ⊂ 2I is a feasibility constraint. It specifies the sets of agents the seller can
simultaneously serve. We assume S is downward closed, i.e., for S ∈ S all
subsets S ′ ⊂ S are in S as well.
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• F = F1 × · · · × Fn is the joint product distribution on agent values for being
served. I.e., vi is drawn independently from distribution Fi with density
function fi.

Bayesian multi-parameter unit-demand mechanism design. The Bayesian multi-
parameter unit-demand mechanism design problem (BMUMD for short) is an
abstraction of the setting where a seller can provide a number of different services
to agents, where each agent desires at most one service. An agent values each
service differently, but the values for each service are drawn independently from
known distributions. Formally we denote an instance of this problem by the tuple
I = (I× J, S, F) where:

• I = [n] is a set of n agents.

• J = [m] is a set ofm services, which is partitioned as Π = (J1, . . . , Jn) among
the n agents.1 The services in Ji are the ones being targeted at agent i. These
agents are unit-demand in that they each desire at most one service from their
partition.

• S ⊂ 2J is a feasibility constraint. It specifies the sets of services the seller can
simultaneously provide. As with the BSMD, we assume S is downward closed,
i.e., for S ∈ S all subsets S ′ ⊂ S are in S. Further, we assume S respects the
partitioning Π and the unit-demand constraint, i.e., S ∈ S and i ∈ [n] implies
|S ∩ Ji| 6 1.

• F = F1 × · · · × Fm is the joint product distribution on agent values over them
services. I.e., vj is drawn from distribution Fj with density function fj.

Note that any instance of the BSMD can be represented as a special case of the
multi-dimensional setting where there is exactly one service available to each agent,
i.e., n = m and Ji = {i}.

Mechanism design problems with budgets. In Bayesian mechanism design prob-
lems with budgets, agents’ preferences are guided not only by how much value
they place on services, but also by how much they can afford to pay to receive

1This partitioning is for notational convenience only. Since we allow for an arbitrary feasibility
constraint over the set J, the assumption that the sets Ji are disjoint is without loss of generality.
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those services. We model this with a hard budget constraint, which places a precise
upper limit on the amount an agent can pay for receiving service. We consider both
settings where the budget constraint is public and common knowledge to both the
mechanism designer and the other agents; and settings where an agent’s budget is
private information of the respective agent.

An instance of the BSMD with public budgets is given by the tuple I = (I, S, F, B);
an instance of the BMUMD with public budgets is given by the tuple I = (I×J, S, F, B).
In both cases, the only difference from the corresponding problems without budgets
is the addition of the parameter B; all other parameters retain the same definitions
and meanings. The new parameter B is a vector with Bi being the budget of agent i.
In the case of private budgets, we simply replace B with a (product) distribution
G =

∏
iGi and agent i has a budget Bi drawn independently from distribution Gi.

2.1.1 The distribution F

Throughout most of this work, we assume agents’ values are all independently
distributed, that is, drawn from a product distribution. In particular, we assume
both that values of different agents are independent of each other, and that when
there are multiple services available, the values a given agent places on them are
also independent. While this assumption is necessary to many of our techniques, it
can be quite a strong assumption; in particular, in BMUMD settings where an agent
wants to receive only one among many alternatives, it seems unnatural to assert
that the values of these options are wholly independent.

We seek to address the above concerns in Section 5.3 of Chapter 5, where we
consider correlated values. In particular, we consider the common base value model,
where an agent’s values for the various services available are split into a portion that
is common to all the services (introducing a natural form of correlation for BMUMD
settings) and a portion specific to the particular service. More formally, each agent i
is assumed to have an (m+ 1)-dimensional type {ti0, · · · , tim} with each tij being
distributed independently according to a known distribution. Agent i’s value for
service j is then given by vij = ti0 + tij. Here, ti0 represents the agent’s base value
for receiving any service and the remaining tij’s capture the agent’s preferences
among the different services.
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2.1.2 The feasibility constraint S

In this work, all of our results require that the feasibility constraint S be downward-
closed. A set system S is said to be downward-closed if we have that for any T ∈ S,
S ⊂ T implies S ∈ S. While in some instances this restriction on S is sufficient to
enable our results, in many cases we find that stronger conditions are required to
achieve positive results. One particular family of set systems that prove important
to our results are matroids, which we describe in the remainder of this subsection.

Matroids and related set systems. Many of our techniques work for feasibility
constraints S that are matroids or close to matroids. We define these set systems
here. The set system (X, S) over a universe X with S ⊆ 2X is called a matroid if it
satisfies the following conditions:

1. (heredity) For every A ∈ S, B ⊂ A implies B ∈ S.

2. (augmentation) For every A,B ∈ S with |A| > |B|, there exists e ∈ A \ B such
that B ∪ {e} ∈ S.

Sets in S are called independent, and maximal independent sets are called bases. A
simple consequence of the above properties is that all bases are equal in size. The
rank of a set S ⊆ X is defined to be the size of any maximal independent subset of S.
The span of a set S ⊆ X, span(S), is the maximal set T ⊇ Swith rank(T) = rank(S).

Here we give some examples of special matroid constraints. A k-uniform ma-
troid on the universe X is a matroid where every subset of X of size at most k is
independent. A partition matroid (X, S) is a union of two or more uniform matroids
{(Xi, Si)}i, where {Xi}i is a partition of X and S = {∪iAi : Ai ⊆ Si ∀i}. A transversal
matroid (X, S) is defined by a bipartite graph G = (V ,E), where V is partitioned as
X ∪ Y for some Y. The independent sets S are precisely those subsets of X that can
be matched one-to-one to a subset of Y in G.2 A set system (X, S) is called a matroid
intersection if there are two matroids (X, S1) and (X, S2), such that S = S1 ∩ S2. An
example of a matroid intersection is a matching in a bipartite graph.

The following proposition is a simple consequence of the above conditions on
matroid set systems and will be useful in our analysis.

2In fact, we can require that the subsets of X in S have matchings to independent sets in some
matroid (Y, S ′), and the result is still a transversal matroid. See, e.g., Aigner (1997) for more details.
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Proposition 2.1. Let B1 and B2 be arbitrary independent sets in some matroid set system
S. Then there exists a set B ′2 ⊆ B2 and a one to one function g : B ′2 → B1 such that for all
e ∈ B ′2, B1 \ {g(e)}∪ {e} is independent in S, and for all e ∈ B2 \B

′
2, B1∪ {e} is independent

in S.

Proof. Our proof relies on the following well known theorem (see, for example,
Brualdi, 1969).

Theorem 2.1. If B1 and B2 are two bases of a matroid, then there exists a one to one function
g : B2 → B1 such that (B1 \ {g(e)}) ∪ {e} is a basis for all e ∈ B2.

Now, in order to apply Theorem 2.1 we need two bases. Let B be a basis of
S. Repeatedly apply the augmentation property to B2 and B to produce a basis
B̄2 ⊃ B2, and then do the same with B1 and B̄2 to produce a basis B̄1 ⊃ B1. Now,
Theorem 2.1 guarantees us a one to one function g : B̄2 → B̄1 such that for all e ∈ B̄2,
B̄1 \ {g(e)} ∪ {e} is independent. Note that for all e ∈ B̄2 ∩ B̄1, we must have that
g(e) = e, since otherwise

B̄1 \ {g(e)} ∪ {e} = B̄1 \ {g(e)} ( B̄1,

and so is not a basis. Since g is one to one, this means that g(e) ∈ B̄1 \ B̄2 for all
e ∈ B̄2 \ B̄1.

Set B2
′ = B2 \ B̄1 ⊂ B̄2 \ B̄1. Since B̄1 \ B̄2 ⊂ B1, we may view g as a one to

one function g : B2
′ → B1. It has the first specified property, since for any e ∈ B2

′,
B1 \ {g(e)} ∪ {e} ⊂ B̄1 \ {g(e)} ∪ {e} is independent. Furthermore, e∈B2 \ B2

′ ⊂ B̄1

implies B1 ∪ {e} ⊂ B̄1 is independent, and so the second specified property holds as
well.

While we do not need the following proposition until Section 5.3, we present
it now in the interest of collecting the results we need on matroids in one place.
We present the proposition without proof (see, e.g. Korte and Hausmann, 1978,
Theorems 1.7 and 3.2).

Proposition 2.2. Let S1 and S2 be arbitrary matroid set systems over a common ground
set. Assume that each element e in the ground set has a weight we. Then if we construct
an independent set G ∈ S1 ∩ S2 in a greedy fashion, i.e. by repeatedly selecting the highest
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weight element we can feasibly add to G until none are left, then∑
e∈G

we > 1/2
∑
e∈S

we

for any S ∈ S1 ∩ S2; furthermore, this holds no matter how we break ties (if any) when
constructing G.

2.2 Mechanism design desiderata

A deterministic mechanism for the settings we consider in this work maps any set
of bids b made by the agents to an allocation M(b) ∈ S and a pricing π(b) with a
price πi to be paid by agent i. A randomized mechanism maps a set of bids to a
distribution over S; we useM(b) to denote this distribution.

The participants in a setting evaluate their outcomes in terms of utility. The utility
an agent i receives with a valuation vi under a bid profile b is the value they receive
minus the payment they must make: vi ·Mi(b) − πi(b). In the case of randomized
mechanisms, we assume that agents are risk-neutral, and experience their expected
utility: E[vi ·Mi(b) − πi(b)], where the expectation is over any randomization the
mechanism performs.

We useRMI (v) to denote the revenue of a mechanismM for instance I at valuation
vector v: RMI (v) =

∑
i∈I πi(v). We drop the subscript I when it is clear from the

context. To aid disambiguation, we sometimes use RMi (v) to denote πi(v) for M.
The expected revenue of a mechanism is RM = Ev[R

M(v)].
We now list desiderata for the mechanism designer.

Objective. We consider two objectives:

• Social welfare, or the sum of utilities of all of the participants. Since payments
act as a transfer of utility from the buyers to the seller, they cancel out and
social welfare can be written as simply the total value all buyers receive from
their respective allocations.

• Revenue of the seller, or the total sum of all payments made by buyers to the
seller.
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Mechanisms that maximize social welfare are called (economically) efficient, while
those that maximize the seller’s revenue are called optimal.

Compatibility with agents’ incentives. Since agents act in their own best interests,
any mechanism we propose must respect their incentives. In the settings we consider,
this has two components:

• Voluntary participation, or individual rationality. This property requires that
every agent be better off participating in the mechanism than not, i.e. every
agent receives nonnegative utility from the mechanism.

• Truthfulness. This property requires that it is always utility-maximizing for
an agent to report their value truthfully. While this may appear to be a strong
property, in fact the Revelation Principle (see Nisan (2007) for a formal state-
ment and details) ensures that we may assume truthfulness without loss of
generality.

Depending on the context, we may require the above properties hold in either
dominant strategies or as a Bayes-Nash equilibrium, as appropriate.

In some settings, it is challenging to obtain truthfulness in dominant strategies.
In such cases, we relax our goals to a weaker solution concept called partial dominant
strategy equilibrium (PDSE). An outcome is in PDSE if all agents that have dominant
strategies follow said strategies and other agents follow (arbitrary) undominated
strategies.

2.3 Optimal single-parameter mechanism design

Myerson (1981) describes the revenue maximizing mechanism for the Bayesian
single-parameter mechanism design problem. Virtual valuations are given by the
formula φ(v) = v− 1−F(v)

f(v)
. When the value distributions Fi are regular, i.e., virtual

valuations are monotone in valuations, the optimal mechanism first computes virtual
values for each agent, and then allocates to a feasible subset of agents that maximizes
the “virtual surplus”—the sum of the virtual values of agents in the set minus the
cost of serving that set of agents (Myerson, 1981). For a single agent, this mechanism
allocates to the agent as long as his value is above the threshold φ−1(0); we call this
threshold the monopoly reserve price corresponding to the value distribution.
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When the distributions Fi are irregular, that is, virtual valuations are not mono-
tone in valuations, Myerson’s mechanism as described above will no longer be
truthful. Myerson addressed this case by “ironing” the virtual valuation function
and converting it into a monotone non-decreasing function called the ironed virtual
value function denoted by φ̄(v). We skip the description of this procedure (the
reader is referred to Bulow and Roberts, 1989; Chawla et al., 2007, for details).

Some of our results require a stronger condition on distributions called the
monotone hazard rate condition, a common assumption in mechanism design
literature. This condition is satisfied by many common distributions such as the
uniform, Gaussian, exponential, and power law distributions.

Definition 2.2. A distribution F with density f is said to have a monotone hazard rate if
the function h(v) = f(v)/(1 − F(v)) is non-decreasing in v. Distributions satisfying MHR
are regular.

We use RM
I to denote the expected revenue of Myerson’s mechanism on a single-

parameter instance I. For our analyses, we primarily require the following three
characterizations of incentive compatible mechanisms, all due to Myerson (1981).
The first tells us that we have Bayesian incentive compatibility if and only if we have
a monotone allocation rule, and furthermore that the payment rule induced by a
monotone allocation rule is unique up to additive “shifts”. The last two formalize
our earlier claim that revenue maximization is equivalent to (ironed) virtual value
maximization.

Theorem 2.3. (Myerson, 1981) A single-parameter mechanism with allocation rule x(·)
and payment rule p(·) is Bayesian incentive compatible if and only if for all i:

1. xi(vi) is monotone nondecreasing in vi and

2. pi(vi) = vixi(vi) −
∫vi

0 xi(z)dz+ pi(0).

Proposition 2.3. (Myerson, 1981) When the distributions Fi are regular, the expected
revenue of any incentive compatible single-parameter mechanismM is equal to its expected
virtual surplus.

Proposition 2.4. (Myerson, 1981) The expected revenue of any incentive compatible single-
parameter mechanismM is no more than its expected ironed virtual surplus. If the probability
with which the mechanism serves agent i, as a function of vi, is constant over any valuation
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range in which the ironed virtual value of i is constant, the expected revenue is equal to
expected ironed virtual surplus.
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3 Sequential pricings for
single-parameter settings
Consider a single-parameter setting where each agent has a private value for service
and there is a combinatorial feasibility constraint on the set of agents that can
be simultaneously served. For this setting a sequential posted pricing (SPM) is a
mechanism defined by a price for each agent, a sequence on agents, and the semantics
that each agent is offered their corresponding price in sequence as a take-it-or-leave-
it while-supplies-last offer. Meaning: if it is possible to serve the agent given the
set of agents already being served then the agent is offered the price. A rational
agent will accept if and only if the price is no more than their private value for
service. That prices are associated with the agents and not the sequence reflects the
possibility that agents may play asymmetric roles for a given feasibility constraint
or value distribution.

Consider the following hotel rooms example with one room, two attendees, and
attendee values independently and identically distributed uniformly between $100
and $200. The optimal mechanism is the Vickrey auction and its expected revenue is
$133. The optimal sequential posted pricing is for the organizers to offer the room to
attendee 1 at a price of $150. If the attendee accepts, then the room is sold, otherwise
it is offered to attendee 2 for $100. The expected revenue of this SPM is $125.

We are interested in comparing the optimal mechanism to the optimal posted
pricing in general settings. A special class of SPMs is one where mechanisms
have provable performance guarantees for any sequence of the agents. These order-
oblivious posted pricings (OPM) are mechanisms defined by a price for each agent and
the semantics that each agent is offered their corresponding price in some arbitrary
sequence as a take-it-or-leave-it while-supplies-last offer.

In single-parameter settings, the advantages of sequential posted pricings speak
to the many reasons optimal auctions are rarely seen in practice (Ausubel and
Milgrom, 2006), and explain why posted pricings are ubiquitous (Holahan, 2008).
First, take-it-or-leave-it offers result in trivial game dynamics: truthful responding
is a dominant strategy. Second, SPMs satisfy strong notions of collusion resistance,
e.g., group strategyproofness (see Goldberg and Hartline, 2005): the only way in which
an agent can “help” another agent is to decline an offer that he could have accepted,



www.manaraa.com

27

thereby hurting his own utility. Third, agents do not need to precisely know or report
their value, they must only be able to evaluate their offer; therefore, they risk minimal
exposure of their private information. Fourth, agents learn immediately whether
they will be served or not. In conclusion, the robustness of SPMs in single-parameter
settings makes their approximation of optimal mechanisms independently worthy
of study.

The final robustness property of SPMs, which will be of paramount importance
when we study multi-parameter settings in later chapters, is that they minimize the
role of agent competition, implying that single-parameter SPMs can be used “as-is”
in multi-parameter settings with only a constant factor loss in performance. In our
translation from the multi-parameter setting to the single-parameter setting, each
multi-parameter agent has many single-parameter representatives. A good OPM
for the single-parameter setting can be viewed as an OPM for the multi-parameter
setting by grouping all representatives of an agent together and making their offers
simultaneously to the agent. The agent will of course accept the offer that maximizes
their utility. The resulting mechanism is incentive compatible and achieves the same
performance guarantee as the single-parameter OPM. For SPMs where we are
not free to group each multi-parameter agent’s single-parameter representatives
together, an agent possibly faces a strategic dilemma of whether to accept an offer
(e.g., for one hotel room) early on or wait for a later offer (e.g., another hotel room)
which may or may not still be available. Our guarantee is robust to the actions of
any agent with such a strategic option; if all agents with dominant strategies follow
said strategies then our performance is a constant fraction of the original SPM’s
performance. (This is a non-standard notion of dominant strategy implementation.)
Given the advantages of SPMs over standard dominant strategy mechanisms, these
partially dominant strategy mechanisms may be more practically relevant.

Finally, we note that most of our results for posted pricings are constructive
and there are efficient algorithms for them. A posted price mechanism has two
components where computation is necessary: an offline computation of the prices
to post (and for SPMs, the sequence of agents) and an online while-supplies-last
offering of said prices.1 The agents are only present for the online part where
the mechanism is trivial. All of the computational burden for an SPM is in the

1This is similar, for example, to nearest neighbor algorithms, where one distinguishes the time
taken to construct a database, and the time taken to compute nearest neighbors over that database
given a query.
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offline part. The offline computation of our posted price mechanisms is based on a
subroutine that repeatedly samples the distribution of agent values and simulates
Myerson’s mechanism on the sample. This clearly requires more computation than
just running Myerson’s mechanism on the real agents in the first place; however, we
benefit from the robustness that comes from the trivial online implementation of
posted pricings.

3.1 Preliminaries

In this section, we formally define sequential posted-price mechanisms, and discuss
technical issues related to their implementation. While the current chapter is focused
on developing mechanisms for the single-parameter setting, in the interests of
completeness we discuss posted-pricing mechanisms in the context of the more
general multi-parameter setting, since we implement them in such settings in later
chapters.

3.1.1 Posted-price mechanisms

We will consider sequential posted-price mechanisms based on the following high-
level protocol that is parameterized by p, a vector of prices, one for each service,
and σ, an ordering over the services.

The generic sequential posted pricing protocol for (p,σ) is as follows:

1. Initialize A← ∅.

2. For j = 1 throughm, do:

a) If A ∪ {σ(j)} ∈ S, offer service σ(j) at price pj.

b) If the agent accepts, A← A ∪ {σ(j)}.

3. Provide the services in A to the corresponding agents.

We denote the revenue of this mechanism on valuation profile v by R
(p,σ)
(I×J,S,F)(v).

In the strategically-simple single-parameter setting this revenue can be calculated
with the assumption that service j is accepted by the agent when offered if vj > pj.
We defer the discussion of incentives in the more complicated multi-parameter
setting to Section 3.1.2.
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It is clear that it is always better from the designer’s point of view to be able to
choose the ordering σ. Unfortunately, this may not always be possible. We therefore
distinguish between the following two kinds of posted-price mechanisms.

Sequenced Posted-Price Mechanisms. An SPM is given by (p,σ). Its expected
revenue is:

R
(p,σ)
(I,S,F) = Ev∼F[R

(p,σ)
(I,S,F)(v)]

Order-oblivious Posted-pricing Mechanisms. An OPM is given simply by the
pricing p where we allow the order over the services to be picked adversarially
after the valuations of the agents are drawn. This pessimistically bounds the worst
possible revenue for a given pricing. Formally:

R
p
(I,S,F) = Ev∼F[minσR(p,σ)

(I,S,F)(v)]

When it is clear from the context we will omit the subscript (I× J, S, F) or (I, S, F).
In some settings we consider randomized versions of SPMs and OPMs where

the pricing p is picked randomly. In this case, we assume that the prices are drawn
first and then the order σ is determined based on the prices (adversarially or by the
designer).

3.1.2 Incentives

Most of the literature on mechanism design (especially in computer science) focuses
on sealed-bid single-round direct-revelation mechanisms. These are mechanisms
that consist of two steps: first agents report bids, to be interpreted as their preferences
over possible outcomes of the mechanisms, and second the mechanism selects an
outcome and agent payments. In this context a mechanism is incentive compatible if
each agent has a (weakly) dominant strategy of truthful reporting. It is assumed
that agents report their true preferences in an incentive compatible mechanism.

Our posted price mechanisms do not take this general single-round form. Instead
our mechanism will offer each agent a sequence of prices (and these offers may be
arbitrarily interleaved among agents). Strategically, a bidder i when offered price pj
for j ∈ Ji has two options. They can accept or reject the offer. An agent with value
vj for service j is sincere if they accept offers pj 6 vj and reject offers pj > vj.
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Sincere bidding is a dominant strategy for an agent only when the ordering σ
respects the agent’s incentives. Formally, we say that an ordering σ is Ji-respecting if
for all j1, j2 ∈ Ji, vj1 − pj1 > vj2 − pj2 > 0 implies σ−1(j1) < σ

−1(j2). That is, the offers
made to agent i are ordered by decreasing utility for the agent (although they may
be interleaved arbitrarily with offers for other agents). An ordering is Π-respecting if
it is Ji-respecting for all i. The following lemma formalizes the connection between
sincere bidding and Π-respecting orderings.

Lemma 3.1. For vJi (the values of agent i) sincere bidding is a (weakly) dominant strategy
for i in sequential posted pricing (p,σ) if and only if σ is Ji-respecting.

It is easy to see that if the condition on σ is met then an agent will have no reason
not to respond sincerely. If the condition is not met, an agent may strategize in the
following way. When offered item j ′ at a desirable price pj ′ , the agent might reject
the offer in hopes of later being offered item j for which the agent has even higher
utility.

The condition of the lemma is met in three special cases of interest:

1. When the agent is single dimensional, i.e., |Ji| = 1.

2. When the agent has positive utility for at most one service, i.e., |{j ∈ Ji :

vj − pj > 0}| 6 1

3. When the agent can choose the relative order of σ on Ji.

Given the last point, for an OPM in the multi-parameter setting we assume
that orderings of interest are Π-respecting and define the worst-case revenue of the
mechanism accordingly:

R
p
(I×J,S,F) = Ev∼F

[
minσ:σ isΠ-respecting R

(p,σ)
(I×J,S,F)(v)

]
In SPMs in multi-parameter settings, the ordering is not necessarilyΠ-respecting.

We assume that all bidders for whom sincere bidding is a (weakly) dominant strategy
indeed bid sincerely. We derive robust bounds on our mechanism performance in the
presence of arbitrary manipulations of agents that do not have dominant strategies.
We term this solution concept partial dominant strategy equilibriumimplementation
(see Section 2.2 for details).
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As is standard in mechanism design, we assume that the agents understand the
mechanism. As our mechanisms are parameterized by prices p, it is assumed that
agents know these prices in advance. This assumption is only necessary for SPMs
when we implement them in multi-parameter settings where an agent imust know
whether there is a future offer pj for j ∈ Ji such that vj − pj > 0.

Lemma 3.2. If Fi is regular for each i, the revenue of any incentive compatible mechanism
M over the n agents is bounded from above by

∑
i p
M
i q

M
i where qMi is the probability (over

v1, · · · , vn) with whichM allocates to agent i and pMi = Fi
−1(1 − qMi ).

Furthermore for every i (with a regular or non-regular value distribution), there exist
two prices pi and pi with corresponding probabilities qi and qi, and a number xi 6 1,
such that xiqi + (1 − xi)qi = qMi , and the expected revenue of M is no more than∑
i xipiqi + (1 − xi)piqi.

Proof. We prove the regular case first. Consider the revenue that M draws from
serving agent i. This is clearly bounded above by the optimal mechanism that sells
to only i, but with probability at most qMi . By Proposition 2.3, such a mechanism
should sell to agent iwith probability 1 whenever the value of the agent is above
Fi

−1(1 − qMi ) and with probability 0 otherwise. The revenue of the optimal such
mechanism is therefore pMi qMi .

In the non-regular case, note that the value pMi may fall in a valuation range
that has constant ironed virtual value. Let pi denote the infimum inf{v : φ̄i(v) =

φ̄i(p
M
i )} of this range and pi denote the supremum sup{v : φ̄i(v) = φ̄i(p

M
i )}. Let

qi = 1− Fi(pi) and qi = 1− Fi(pi). Then, qi 6 qMi 6 qi, and there exists an xi such
that xiqi+ (1− xi)qi = qMi . Now an easy consequence of Proposition 2.4 is that the
optimal mechanism with selling probability qMi sells to the agent with probability
xi if the agent’s value is between pi and pi, and with probability 1 if the value is
above pi. The revenue of this mechanism is exactly xiqipi + (1 − xi)qipi.

3.1.3 Computing the posted prices

For all but one of the approximately-optimal posted-price mechanisms that we
present, prices and orderings can be computed efficiently in a computational model
where we have black box access to the distribution F. Please see Section 3.4 for
details.
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3.2 Order-oblivious sequential pricings

In this section we instantiate the reduction described in Section 4.1 for several
different settings. We begin by developing our approach in the context of a “k item
auction” setting, obtaining a (tight) 2-approximation in that setting. We then expand
this approach to obtain constant-factor approximations for other matroids as well
as matroid intersection constraints. For example, we show that in a setting with
heterogeneous items and multiple unit-demand agents with identically distributed
values (that we call the “supermarket setting”), there exists a pricing of the items
that obtains a 2e/(e− 1) approximation to the optimal mechanism.

Our most general positive result is a non-constructive O(log k)-approximation
for arbitrary matroids, where k is the rank of the matroid. On the negative side, we
show that the gap between OPMs and the optimal achievable revenue can be as large
as logn

log logn for non-matroid feasibility constraints, where n is the number of agents.
Table 3.1 summarizes the approximation factors for all the settings considered.

k-uniform matroids

To illustrate our main technique for designing good OPMs we begin by presenting
a simple 4-approximation for the case where S is a k-uniform matroid and F is
regular. Our approach is to determine the probabilities qMi with which Myerson’s
mechanism serves each agent. We then offer to each agent a price that is accepted by
the agent with probability roughly the same as qMi (or smaller by a constant factor).
We then exploit properties of the feasibility constraint to show that with these prices
the probability that an agent gets “blocked” by other agents and does not receive an
offer is small for every agent.

Theorem 3.3. Let I = (I, S, F) be an instance of the BSMD with S being a k-uniform
matroid and F being regular. Then, there exists a set of prices p such that Rp

I > 1
4R

M
I .

Proof. For each j ∈ J, let qMj be the probability with which an optimal mecha-
nism would sell service j, and pMj = Fj

−1(1 − qMj ). Set qj = qMj /2 and pj =

Fj
−1(1 − qj) > pMj . We show that these prices p achieve the claimed approxi-

mation. Define cj to be the probability the OPM p may still offer service j when
it is reached in some arbitrary ordering σ. Then we can see that for all j ∈ J,
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cj > Pr[The OPM p sells less than k services]. On the other hand,

E[Number of services sold by OPM p]

6 E[Number of services desired at prices p]

6
∑
j∈J

qj 6 k/2,

by our choice of qj, and the fact that no mechanism can sell more than k services in
setting I. Thus, applying Markov’s inequality we can see that cj > 1/2∀j, and,

R
p
I =
∑
j∈J

cjqjpj >
1
4
∑
j∈J

pMj q
M
j >

1
4
RM

I ,

where the last inequality follows from Lemma 3.2.

We now demonstrate an improved (and tight) 2-approximation. Our analysis
follows an approach developed in the context of prophet inequalities by Samuel-
Cahn (1984). The following lemma encapsulates our use of techniques from that
literature.

Lemma 3.4. Let I = (I, S, F) be an instance of the BSMD with a k-uniform matroid
constraint. Given any set of prices p, define qj = 1 − Fj(pj) and q =

∑
j∈J qj. Then there

exist prices p ′ such that pj ′ > pj for all j ∈ J and

R
p ′
I >

1
1 + q/k

∑
j∈J

pjqj.

Proof. We define the desired prices p ′ as follows. For a random variable X, let (X)+

denote the positive portion of X, i.e. (X)+ = max(0,X). Let r∗ be the unique solution
to the equation

kr =
∑
j∈J

qj(pj − r)
+.
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Thus, we have that ∑
j∈J

qjpj 6
∑
j∈J

qj
(
r∗ + (pj − r

∗)+
)

=

(
r∗
∑
j∈J

qj +
∑
j∈J

qj(pj − r
∗)+
)

6 kr∗ (1 + q/k) .

For all j ∈ J, define the prices (and associated probabilities)

pj
′ = max{pj, r∗}, and

qj
′ = 1 − Fj(pj

′).

Then r∗ is also the unique solution to the equation

kr =
∑
j∈J

qj
′(pj

′ − r).

Now, as in the proof of Theorem 3.3, define cj to be the probability that OPM
p ′ may still offer service j when it is reached; then we can see that for all j ∈ J,
cj > Pr[The OPM p ′ sells less than k services]. So we can lower bound the revenue
from p ′ as

R
p ′
I =

∑
j∈J

cjqj
′pj
′ =
∑
j∈J

cjqj
′r∗ +

∑
j∈J

cjqj
′(pj

′ − r∗)

= r∗ · E[No. of services sold] +
∑
j∈J

cjqj
′(pj

′ − r∗)

> kr∗ · Pr[k services sold]

+

(∑
j∈J

qj
′(pj

′ − r∗)

)
Pr[less than k services sold]

= kr∗.

Combining these gives us the claimed lower bound.

We now proceed to prove the improved approximation mentioned earlier.
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Theorem 3.5. Let I = (I, S, F) be an instance of the BSMD where the constraint S is a
k-uniform matroid. Then there exist prices p such that Rp

I > 1
2R

M
I .

Proof. We first consider the setting for regular distributions. Recall from Lemma 3.2
that for regular distributions the revenue of the optimal truthful mechanism for I
is bounded by

∑
j∈J p

M
j q

M
j , where qMj is the probability with which the optimal

mechanism allocates service j and pMj = Fj
−1(1 − qMj ). Since any mechanism for I

can sell no more than k items, we know that
∑
j∈J q

M
j 6k. The claimed result then

follows immediately from applying Lemma 3.4 to I with prices pM.

By observing that in a partition matroid there is no interaction between the
constituent uniform matroid constraints we immediately get the following corollary.

Corollary 3.6. Let I = (I, S, F) be an instance of the BSMD where S is a partition matroid.
Then there exist prices p such that Rp

I > 1
2R

M
I .

A lower bound of 2. We now show that OPMs cannot approximate the optimal
revenue to within a factor better than 2 even in the single-item setting. Consider a
seller with one item and two agents. The first agent has a fixed value of 1. The second
has a value of 1/εwith probability ε and 0 otherwise, for some small constant ε > 0.
Then, the optimal mechanism can obtain a revenue of 2 − ε by first offering a price
of 1/ε to the second agent, and then a price of 1 to the first if the second declines
the item. On the other hand, if the mechanism is forced to offer the item to the
first agent first, then it has two choices: (1) offer the item at price 1 to agent 1; the
agent always accepts, and (2) skip agent 1 and offer the item at price 1/ε to agent
2; the agent accepts with probability ε. In either case, the expected revenue of the
mechanism is 1.

Graphical matroids

While we do not know how to obtain constant factor approximations through OPMs
for general matroid feasibility constraints, we now demonstrate that OPMs are
constant factor optimal for a large class of matroids, namely graphical matroids.
The ground set for a graphical matroid is the set of all edges of an undirected graph;
A subset of edges is independent if it forms a forest (that is, it contains no cycles).

In order to obtain an approximation, however, we need to extend our definition
of OPMs to allow the mechanism to be more restrictive in enforcing feasibility.
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Specifically, a constrained order-oblivious posted-price mechanism (COPM, for
short) is given by the tuple (p, S ′) where S ′ ⊆ S, and (as for OPMs) we allow the
order σ over the agents to be picked adversarially, after the valuations of the agents
are drawn. The selling protocol for a COPM offers a service j if the service along
with previously allocated services is feasible in the set system S ′, and not merely in
S.

For graphical matroids, Babaioff et al. (2009) and Korula and Pál (2009) develop
approaches for reducing this case to a partition matroid that in our setting yield
a 8-approximation to the optimal revenue; we use a similar approach but exploit
the connection between prophet inequalities and partition matroids to obtain a
3-approximation.

Theorem 3.7. Let I be an instance of the BSMD with a graphical matroid feasibility con-
straint. Then there is a COPM (p, S ′), where S ′ is a partition matroid, that 3-approximates
RM for I.

Proof. Our technique here is to partition the elements of the matroid such that we
may treat each part as a 1-uniform matroid yet still respect the original feasibility
constraint, and achieve good revenue while doing so.

Let G = (V , J) be the graph defining our matroid constraint, where J is the set of
services/edges. As before, let qMj denote the probability with which edge (service)
j is allocated by the optimal mechanism. Let δ(v) denote the set of edges incident
on a vertex v, and for each v ∈ V define qv =

∑
j∈δ(v) q

M
j . Now, we can see that

∑
v∈V

qv =
∑
j∈E

2qMj 6 2(|V |− 1),

This implies that there exists a v for which qv 6 2; Let δ(v) be one of our partitions.
Note that the edge set δ(v) forms a cut inG, and so given an independent set of edges
from J \ δ(v) we may add any single edge from δ(v) while retaining independence.
We apply this argument recursively to (V \ {v}, J \ δ(v)) to form the rest of our
partition. At the end, we have a partition of J such that each part has total mass no
more than 2 and any collection of edges using no more than one edge from each
part is independent.

We first note how to obtain a simple 8-approximation and then describe the
changes needed to obtain a 3-approximation. We define S ′ to be the union of 1-
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uniform matroids, each over the different parts of J defined above. The prices p
for the 8-approximation are defined as follows: qj = qMj /4 and pj = Fj−1(1 − qj).
Then, the optimal revenue is at most 4

∑
j pjqj, whereas, our mechanism offers each

service with probability at least 1/2, and therefore, obtains a revenue of 1/2
∑
j pjqj.

To obtain a 3-approximation, we use the same constraint S ′ a before, but here
we invoke Lemma 3.4. Consider a single part X ⊂ J within S ′. Since X is a 1-
uniform matroid, and we chose it such that

∑
j∈X q

M
i 6 2, we can see that applying

Lemma 3.4 to each part in turn will yield a set of prices p such that the revenue of
the COPM (p, S ′) is at least 1

3
∑
j∈J p

M
j q

M
j .

General matroids

We now prove theO(log k) approximation for general matroids, where k is the rank
of matroid. We remark that a similar result was obtained by Babaioff et al. (2007) for
the related matroid secretary problem. However, we show though an example at the
end of this subsection that their approach cannot give a non-trivial approximation
in our setting.

Theorem 3.8. Let I be an instance of the BSMD with a matroid feasibility constraint. Then,
there exists a set of prices p such that Rp

I O(log k)-approximates the optimal mechanism’s
(Myerson’s) revenue RM

I .

Proof. We first consider the setting for regular distributions. Recall from Lemma 3.2
that for regular distributions the revenue of the optimal truthful mechanism for
I is bounded by

∑
j p
M
j q

M
j , where qMj is the probability with which the optimal

mechanism allocates service j and pMj = Fj
−1(1 − qMj ). The OPM we describe

sets the same prices as the optimal mechanism, i.e. pj = pMj . Note that since the
feasibility constraint is a matroid, for any instantiation of values, the worst (least
revenue) allocation is achieved when agents arrive in the order of increasing prices.
Hereafter we assume that agents always arrive in that order. Let ci be the probability
that service i gets offered in this ordering. Note that the expected revenue may be
expressed as

∑
i cipiqi.

Now consider a hypothetical situation where the prices are all equal to 1 but the
probabilities with which the agents accept the offered prices are still qi. Then, the
expected revenue of this hypothetical mechanism would be given by

∑
i ciqi which

is at least 1/2
∑
i qi by the argument in Theorem 3.12. In other words, the weighted
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average of the cis is at least 1/2, weighted by the qis. We get that

(1/2)
∑
i

qi 6
∑
i

cjqi 6
∑

i:cj<1/4

qi/4 +
∑

i:cj>1/4

qi

= (1/4)
∑
i

qi + (3/4)
∑

i:cj>1/4

qi

and hence

∑
i:cj>1/4

qi > (1/3)
∑
i

qi.

This means that the probability mass of elements having cj > 1/4 is at least a third
of the total. Let G = {i|cj > 1/4}; the revenue obtained from serving only the agents
in G is ∑

i∈G

cipiqi > 1/4
∑
i∈G

pMi q
M
i . (3.1)

Consider recursively applying the above argument to the elements outside G.
At step j, let Gj be the newly found G, and let Ej be the set of agents still under
consideration, defined as E1 = [n] and Ej = Ej−1 −Gj−1 for j > 1. Now, at each stage,
Gj contains at least one third of the total probability mass of the remaining elements;
thus, at stage ` = d1 + log3/2 ke, we would have reduced the total probability mass
to less than 3/4; by noting that any singleton set is independent in a matroid and
applying Markov’s inequality we may see that G` = E`. Since the collection of Gj’s
form a size O(log k) partition of [n], and summing (3.1) over the collection gives
a total expected revenue of at least RM/4, we may conclude that there is some Gj
which gives aΩ(1/ log k)-fraction of RM regardless of ordering.

Proof of Theorem 3.8 for non-regular distributions. We now prove Theorem 3.8 when
distributions are non-regular. For doing this, we first give a different proof for
Theorem 3.8 for regular distributions. While in Section 3.2 we proved that for any
Gj, when the services in Gj are offered in the “worst” ordering, the probability ci
of a service i ∈ Gj being offered is at least 1/4, we now prove that for any i ∈ Gj,
even if i is placed last in the ordering among services in Gj, i has a probability 1/4
of being offered.
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The mechanism sets qi = qMi /2 and pi = Fi−1(1−qi). For any service i consider
placing it last. Let D be the set of services that are “desired”, that is, services for
which vi > pi. Note that the mechanism offers to provide service i only if the
services sold till i don’t span it. Thus, at each step, the served set has the same span
as the portion of D seen so far. We then have that

Pr
D
[We offer service i if placed last] = Pr

D
[i /∈ span(D− \{i})]

> Pr
D
[i /∈ span(D)]; (3.2)

Let ci denote the probability (3.2), which is over the desired set D. Fix any basis
B. For any desired setD, at least (k− rank(D)) elements of B are not spanned byD.
Thus, we have ∑

i∈B

ci =
∑
i∈B

∑
D:i/∈span(D)

Pr[D is desired]

=
∑
D

(k− rank(D))Pr[D is desired]

= k− E
D
[rank(D)] > k/2,

where the inequality follows from the fact that

E
D
[rankD] 6 E

D
[|D|] =

∑
i∈[n]

qi 6 k/2.

Thus,
∑
i∈B ci > k/2 which implies that at least one third of the agents in Bmust

have ci > 1/4. Let G = {i|ci > 1/4}. The revenue obtained from serving only the
agents in G is ∑

i∈G

cipiqi > 1/8
∑
i∈G

pMi q
M
i .

As before, we can recursively apply the above argument to the elements outside G.
At step j, let Gj be the newly found G, and let Ej be the set of services still under
consideration, defined as E1 = [n] and Ej = Ej−1 −Gj−1 for j > 1. Now, at each stage,
Gj contains at least one third of the the remaining services. Thus we have O(log k)
Gj’s, and one of these must containΩ(1/ log k)-fraction of the revenue.
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Now, when the distributions Fj are non-regular, we pick the prices pj randomly
as suggested by Lemma 3.2, such that the probability that service j is accepted if
offered a randomized price is exactly qMj /2, and RM

I is bounded from above by
2
∑
j E [pjqj]. We assume that for each instantiation of the prices, the mechanism

faces the “worst” ordering for that instantiation, i.e., the ascending order of prices
for every intantiation. To bound the expected revenue that the OPM obtains from
allocating service j ∈ Gi, we note that in any instantiation of the prices (and cor-
responding “worst” ordering over services), we can pessimistically defer offering
service j until all other services in Gi have been offered. Then, following the above
analysis, the probability that j is offered is at least cj > 1/4. Then, the expected
revenue from j is at least 1/4 E [pjqj], which is 1/8-th of the revenue that this service
contributes to RM. Therefore, as before, one of the Gi’s contain Ω(1/ log k) fraction
of the revenue.

We remark that while all the other posted price mechanisms we give can be
computed efficiently(see Section 3.4), we do not know of an efficient algorithm for
computing an O(log k)-approximate OPM.

As was mentioned earlier, Babaioff et al. (2007) obtain a similar result for the
related matroid secretary problem. In Babaioff et al.’s setting agents arrive in a
random order but their values are adversarial. They present an O(log k) approx-
imation by picking a price uniformly at random in the set {h/k, 2h/k, · · · ,h} and
charging it to every agent; here h is the largest among all values. In our setting such
an approach does not work: the example below shows that no uniform pricing can
achieve an o(logh) approximation even for k = 1.

Example 3.9. Let k = 1 and consider a group of h agents where agent i has a value of i
with probability 1/2i2 and zero otherwise. Then an SPM that sets a price of i for agent i
obtains an expected revenue ofΩ(logh). On the other hand, an SPM that uses a uniform
price of c only obtains expected revenue

∑
i∈[c,h] c/2i2 < c/2c = 1/2.

Non-matroid constraints

We now show that the approximations described above cannot extend to general
non-matroid set systems. In particular, the example below describes a family of
instances with i.i.d. agents and a symmetric non-matroid constraint for which the
ratio between the expected revenue of Myerson’s mechanism and that of the optimal
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OPM isΩ(logn/ log logn) where n is the number of agents. In fact the same lower
bounds holds even for SPMs, that is, when we are able to choose the best ordering
over offers.

Example 3.10. For a given k, set n = kk+1. Partition [n] into kk groups G1, · · · ,Gkk of
size k each, with Gi ∩ Gj = ∅ for all i 6= j. The set system S contains all subsets of the
groups Gi, that is, S = ∪i2Gi Each agent has a value of 1 with probability 1 − 1/k and k
with probability 1/k.

For any given valuation profile, let us call the agents with a value of k to be good agents
and the rest to be bad agents. The probability that a group contains k good agents is k−k.
Therefore in expectation one group has k good agents and Myerson’s mechanism can obtain
revenue k2 from such a group: RM = Ω(k2).

Next consider any SPM. Once the mechanism commits to serving an agent, it can only
serve agents within the same group in the future. These have a total expected value less
than 2k. Therefore, the revenue of any SPM is at most k from the first agent it serves
and 2k in expectation from subsequent agents, for a total of 3k. We get a gap of Ω(k) =

Ω(logn/ log logn).

The above example also shows that while in many single-parameter pricing
problems when the values are distributed in the range [1,h] it is possible to obtain a
logh approximation to social welfare, the same does not hold in our general setting.
In the example we have h = m and the gap between the expected revenue of the
optimal SPM and that of Myerson’s mechanism isΩ(h). On the other hand, the gap
is always bounded by O(h) and is achieved by an SPM that charges each agent a
uniform price of 1.

While the above example illustrates that OPMs cannot obtain a constant-factor
approximation in non-matroid settings, we now present an example with a non-
matroid constraint for which the revenue obtained by ordering the agents in the
optimal way is a factor of Ω(logn/ log logn) larger than that obtained by ordering
the agents in the least optimal way.

Lemma 3.11. There exists an instance of the single-parameter mechanism design problem
with a non-matroid feasibility constraint, along with two orderings σ1 and σ2 such that the
revenue of the optimal SPM using ordering σ1 is a factor ofΩ(logn/ log logn) larger than
that of the optimal SPM using ordering σ2.
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Proof. Consider the following example. Construct a completem-ary tree of height
m + 1, and place a single agent at each node other than the root. The agents’
valuations are i.i.d. , where any agent has a valuation of m with probability 1/m,
and a valuation of 0 otherwise. Our constraint on serving the agents is that we may
serve any set of agents that lie along a single path from the root of the tree to some
leaf – it is easy to verify that this is downward-closed.

Consider what happens when we may serve the agents in order by level from
the root of the tree to the leaves. At each level of the tree, we may offer to serve
at leastm different agents, regardless of the outcome on previous levels. Since we
may never sell to more than one agent per level, our revenue is either 0 or m on
each level. We get a revenue of 0 if and only if every agent has a valuation of 0; this
occurs with probability at most

(1 − 1/m)m 6 1/e,

and thus our expected revenue overall is at least

m2 · (1 − 1/e) = Ω(m2).

On the other hand, if we must serve the agents in order by level from the leaves
of the tree to the root, then the first agent we serve commits us to a specific path.
So we cannot hope to achieve revenue better thanm for this specific node, plus the
revenue expected revenue for an arbitrarily chosen path. Since each agent has an
expected valuation of 1, this is bounded by

m+ (m− 1) · 1 = O(m).

Thus, the difference in revenue between the described orderings isΩ(m); since
the total number of agents isn = O(mm), in terms ofn this gap isΩ(logn/ log logn).

3.3 Order-specifying sequential pricings

In this section we show that we can achieve much better approximations for some
settings by picking the right ordering σ over offers, that is, through sequenced
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posted-price mechanisms. While there is no direct reduction from SPMs in multi-
parameter settings to SPMs in single-parameter settings analogous to Theorem 4.3,
we show that for matroid and matroid intersection settings our results carry over in
an approximation preserving way to multi-parameter instances as well.

We begin with a 2 approximation to single-parameter instances with a general
matroid feasibility constraint, and show an improved 1.58 approximation for the
special cases of uniform and partition matriods. We then describe a 3 approxima-
tion for general matroid intersection. We conclude this section by proving an 8
approximation in PDSE to multi-parameter instances with a general matroid in-
tersection constraint. Table 3.2 summarizes the approximation factors for all the
settings considered.

3.3.1 A 2-approximation for matroids

Consider the instance I = (I, S, F) where S is a matroid with rank k. Assume first
that all the distributions Fj are regular. Let qj = qMj be the probability with which
the optimal truthful mechanism (Myerson’s mechanism) allocates service j. Let
pj = p

M
j = Fj

−1(1−qMj ). Let σ be the order of decreasing prices pj over the services.
Our approximately optimal SPM is given by (p,σ). When the distributions Fj are
non-regular, we define the prices randomly as suggested by Lemma 3.2, and for
each instantiation of the prices, pick the greedy ordering over services in order of
decreasing prices.

Theorem 3.12. Let I be an instance of the BSMD with a matroid feasibility constraint. Then,
the mechanism (p,σ) described above 2-approximates the revenue of Myerson’s mechanism
for I.

Proof. We show that the mechanism (p,σ) achieves an expected revenue of at least
1
2
∑
i piqi. Once again we start with the assumption that all the distributions Fj are

regular. Note that if the mechanism ignored the feasibility constraint S, and offered
the prices p to all agents, serving any agent that accepted its offered price, then
its expected revenue would be exactly

∑
i piqi. So our proof accounts for the total

revenue lost due to agents “blocked” from getting an offer by previously served
agents.

Formally, let S = {i1 < i2 < · · · < i`} be the set of agents served, and let Sj denote
the first j elements of S. Let span(S) denote the span of set S. Define the sets
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Bj = (span(Sj) \ span(Sj−1)) ∩ {i : i > ij}. Note that the sets Bj partition the set
of agents blocked by those previously served. Moreover, pi 6 pij for all i ∈ Bj, since
Bj ⊆ {i : i > ij}.

Denote the price offered to agent ij by pj. Then, the expected revenue lost given
that S is served is

∑̀
j=1

∑
i∈Bj

piqi

6 p1

 ∑
i∈sp(S1)

qi

+
∑̀
j=2

pj

 ∑
i∈sp(Sj)

qi −
∑

i∈sp(Sj−1)

qi


=

`−1∑
j=1

(pj − pj+1)
∑

i∈sp(Sj)

qi

+ p`

 ∑
i∈sp(S`)

qi


6
`−1∑
j=1

(pj − pj+1) · j+ p` · ` =
`−1∑
j=1

pj,

which is the revenue obtained by serving S. Here we used the fact that
∑
i∈sp(Sj) qi 6

rank(Sj) = |Sj| = j. Therefore,

E[revenue lost] 6
∑
S

∑
j∈S

pj · Pr[S is served] = R(p,σ),

and so it follows that
∑
i piqi 6 2R(p,σ).

Next consider the case of non-regular distributions. As mentioned earlier, we
pick prices randomly as suggested by Lemma 3.2. Let pj be the average price offered
for service j if j is the first service offered. Consider a hypothetical posted-price
mechanism that orders the services in decreasing order of pj, and then defers the
instantiation of the prices to be offered to just before the service is offered. Then, the
acceptance probabilities for the services are exactly qj, and the previous analysis
continues to work in this case. Our SPM, that picks the greedy ordering for every
instantiation of prices performs no worse than this hypothetical mechanism and we
obtain the same approximation factor as before.

We note that this approximation factor is not known to be tight. Blumrosen
and Holenstein (2008) show that the gap between the optimal SPM and Myerson’s
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mechanism can be as large as
√
π/2 ≈ 1.253 even in the single item auction case with

i.i.d. agents. We reproduce the example here for completeness. There are n agents,
each with a value distributed independently according to function F(v) = 1 − 1/v2.
The seller has one item to sell. Then, the expected revenue of Myerson’s mechanism
is Γ(1/2)

√
n/2, where Γ() is the Gamma function. On the other hand, the expected

revenue of the optimal SPM can be computed to be
√
n/2. Therefore, we get a gap

of Γ(1/2)/
√

2 =
√
π/2 ≈ 1.253.

Improved approximations for partition matroids

We now show an improved e/e− 1 = 1.58 approximation for uniform and partition
matroids. We begin by proving it for 1-uniform matroids, then extend it k-uniform
matroids and partition matroids.

Let qj = qMj be the probability with which the Myerson’s mechanism allocates
service j. The SPM sets a price of pj = pMj = Fj

−1(1 − qMj ) for service j. Let σ be
the order of decreasing prices pj over the services. and let cj denote the probability
of offering service j in this ordering. Note that for uniform matroids, the offer
probabilities are always in descending order, i.e. if i < j, then cσ(i) > cσ(j). The
expected revenue Rσp of this SPM is exactly

∑n
i=1 cipiqi. Let p be the price satisfying

the equation ∑
i

piqi = p
∑
i

qi. (3.3)

Now consider a hypothetical situation where the prices are all equal to p but the
probability with which agents accepted the items are still qi. Let R̄ (=

∑
i cipqi)

denote the revenue obtained in this hypothetical setting. We first prove that Rσp > R̄.

Lemma 3.13. Rσp > R̄

Proof. For notational convenience, let us assume w.l.g. that for all i, σ(i) = i. Recall
that for uniform matroids, for any given order σ, the cσ(i)’s are in descending order.
Since we assume σ(i) = i, the ci’s are in descending order. Let δi = qi(pi − p). So
we have

Rσp =

n∑
i=1

cipiqi =

n∑
i=1

ci(pqi + δi) = R̄+

n∑
i=1

ciδi > R̄,

where the inequality follows from observing that:
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• ci’s are in descending order;

• ∃j such that δi is non-negative for all i 6 j and negative otherwise; and

•
∑
i δi = 0 (By (3.3)) .

Theorem 3.14. Let I be an instance of the BSMD with a 1-uniform matroid feasibility
constraint. Then, the mechanism (p,σ) achieves an (e/e− 1)-approximation to the revenue
of Myerson’s mechanism for I.

Proof. Let
∑
i qi = s. Note that s 6 1, as we are in a 1-uniform matroid setting. We

first prove that R̄ > (1 − 1
e
)ps.

R̄ = p(Pr[Some agent is served]) = p(1 − Pr[No agent is served])

= p

(
1 −

n∏
i=1

(1 − qi)

)

> p

(
1 −

n∏
i=1

(1 − s/n)

)
(3.4)

> (1 − 1/e)ps,

where (3.4) follows since the product is maximized when the qi’s are all equal. Now,
from (3.3) we have ps =

∑
i piqi. This, along with Lemma 3.13 proves the theorem

when distributions are regular.
For non-regular distributions, if pi is defined as

xipiqi + (1 − xi)piqi

qi
,

from Lemma 3.2, we know that the optimal revenue achievable by selling an item
with probability qi to agent i is no more than piqi, and thus expected revenue
of Myerson’s mechanism is upper bounded by

∑
i piqi. On the other hand, the

revenue of the SPM, which picks prices randomly, is
∑
i cipiqi. The rest of analysis

is identical to that for regular distributions.

Next we consider the k-uniform case.
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Theorem 3.15. Let I be an instance of the BSMD with a k-uniform matroid feasibility
constraint. Then, the mechanism (p,σ) achieves an (e/e− 1)-approximation to the revenue
of Myerson’s mechanism for I.

Proof. Our proof technique is closely related to the proof for 1-uniform matroids.
Let pi = pMi and let p be the common price for all agents which satisfies (3.3). If we
define R̄ as defined for the 1-uniform case, then the proof of Lemma 3.13 extends to k-
uniform matroids also. Thus it would be enough to argue that R̄ > (1− 1/e)p

∑
i qi.

For any set of probabilities {qi} in the k-item case, let us define qi ′ = qi/k. Note
that the probabilities {qi ′} form a valid set of probabilities for a 1-item case because∑

i

qi
′ =
∑
i

qi/k 6 1

We can come up with distributions Fi ′ for the 1-item case such that the price
Fi
′−1(1−qi ′) = p for all services. Let c ′i denote the probability that service i is offered

in this derived 1-item case. By Theorem 3.14, we know that the revenue in this
1-item case, given by

∑
i c
′
ipqi

′, is at least (1− 1/e)
∑
i pqi

′. If we can prove that the
revenue R̄ for the k-item case, given by

∑
i cipqi, is at least k times

∑
i c
′
ipqi

′, then
we are done. We prove this by the following induction. We assume that for j−1 6 n,
the revenue Rj−1 from the first j−1 items is at least k times the revenue R ′j−1 from the
first j− 1 items in the corresponding 1-item case i.e.

∑j−1
i=1 cipqi > k ·

∑j−1
i=1 c

′
ipqi

′.
The base case is trivially true. We prove the same for j through two cases.

1. If cj > c ′j, then we are done, because we know that revenue Rj from the first j
items can be written as

Rj = Rj−1 + cjpqj > k(R
′
j−1) + kc

′
jpqj

′ = kR ′j.

The inequality uses the induction hypothesis.

2. If cj < c ′j, we show that the revenue obtained is better than when cj = c ′j and
then we will be done. To see this observe that the revenue Rj can be written as
being conditioned on whether or not k items were sold in the first j− 1 items.
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So we have

Rj = (1 − cj)kp+ cj
(
pqj

+ E[Rj−1| at most k− 1 of first j− 1 served]
)
;

since we have that

kp >
(
pqj + E[Rj−1|at most k− 1 of first j− 1 served]

)
,

we conclude that the revenue only decreases by increasing cj to c ′j.

Thus in either case, the k-item case has a better revenue, guaranteeing an ap-
proximation factor of e

e−1 .

Corollary 3.16. Let I be an instance of the BSMD with a partition matroid feasibility
constraint. Then, the mechanism (p,σ) achieves an (e/e− 1)-approximation to the revenue
of Myerson’s mechanism for I.

BSMD with a matroid intersection constraint

The SPM (p,σ) we use here has prices p and the ordering σ picked in a manner
similar to the one employed in Section 3.3.1.

Theorem 3.17. Let I be an instance of the BSMD with a feasibility constraint that is an
intersection ofm matroids. Then, the mechanism (p,σ) (m+ 1)-approximates the revenue
of Myerson’s mechanism for I.

Proof. Let the m matroids be denoted by M1, M2, . . . , Mm. Let ranka(S) and
spana(S) denote respectively the rank and span of set S in the matroid Ma. Note
that for any subset S and any a ∈ [m], we have

∑
i∈S qi 6 ranka(S). Once again, let

S = {i1 < i2 < · · · < i`} denote the set of agents served. We prove the theorem by
showing that the expected revenue of S is at least 1/(m + 1)

∑
i piqi, by arguing

that the total price paid by agents in S is at least 1/m times the expected revenue
from agents that are “blocked” by S.

Let Sj denote the first j elements of S. For each 16a6m, define sets Baj with
respect to matroid Ma as in the proof of Theorem 3.12. That is, Baj = spana(Sj) \
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spana(Sj−1). Denote the price of item ij by pj. Then, if we let Bj = ∪ma=1B
a
j , we can

upper bound the expected revenue lost when S is served by

∑
16j6`

∑
i∈Bj

piqi 6
m∑
a=1

∑
16j6`

∑
i∈Baj

piqi 6 m
∑

16j<`

pj.

Here we used the same algebraic transformation as in the proof of Theorem 3.12
along with the fact that

∑
i∈Baj

qi 6
∑
i∈spana(Sj)

qi 6 j. Therefore as before we get∑
i piqi 6 (m+ 1)Rσp proving the theorem for regular distributions.
For non-regular distributions, we pick the prices pj randomly as suggested by

Lemma 3.2, and thus RM
Ireps is bounded from above by

∑
j E [pjqj]. The ordering σ in

one where the services are offered in the decreasing order of their expected prices.
The instantiation of price for a service is deferred till the service is offered. Then
along the lines of the proof of regular distributions, the expected total price in B
(expectation over the values as well as the randomization over prices), conditioned
on S, is at most m times the expected total price contained in S (expectation over
the randomization over prices). Thus, the expected total price contained in S is at
least 1

m+1
∑
j E [pjqj].

Combinatorial auctions with small bundles

Consider a situation where the seller has multiple copies of a number of items on
sale, and each agent is interested in some (commonly known) bundles over items
and has a common value for all of these bundles . When each desired bundle is of
size at mostm, we call this setting a single-parameter combinatorial auction with
known bundles of sizem. In this case the SPM (p,σ), similar to the one described
in Section 3.3.1, achieves anm+ 1 approximation.

Theorem 3.18. Let I be an instance of a single-parameter combinatorial auction with
known bundles of sizem. Then, the mechanism (p,σ) (m+ 1)-approximates the revenue of
Myerson’s mechanism for I.

Proof. LetAdenote the set of items available to the seller, each with some multiplicity.
First suppose that each agent is single-minded, that is, each agent is interested in
only one bundle of items, the bundle being of size at mostm. Then, the feasibility
constraint is an intersection over |A| uniform matroids, one corresponding to each
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item, with each agent participating in only m of the matroids. Now it is easy to
adapt the proof of Theorem 3.17 to obtain anm+ 1 approximation.

More generally suppose that every agent is interested in a collection of bundles,
each of size at mostm, and modify the mechanism S so that in addition to deciding
whether or not to serve an agent, it also arbitrarily allocates any available desired
bundle to every agent it serves. Then we can argue that for any set S, and set B
blocked by the agents in S, the sum of the probabilities qi over the set B is no more
than m times the size of S. Therefore, once again following along the proof of
Theorem 3.17, we get anm+ 1 approximation.

The extension to non-regular distributions is identical to that described in Theo-
rem 3.17.

3.4 Computing the near-optimal posted-price
mechanisms

We now describe how to compute the approximately optimal OPMs and SPMs
designed in Sections 3.2 and 3.3. We assume that we are given access to the following
oracles and algorithms:

• An algorithm to compute the optimal price to charge to a single-parameter
agent given the agent’s value distribution. Note that given such an algorithm
and some value x, we can modify it to return the optimal price in the range
[x,∞) to charge the agent.

• An oracle that given a value v and index i returns Fi(v) and fi(v), as well as,
given a probability α returns Fi−1(α). Note that the oracle can be used to
compute the virtual value φi(v).

• An oracle for computing ironed virtual values in order to compute the approx-
imately optimal SPM for non-regular distributions.

• An algorithm to maximize social welfare over the given feasibility constraint
in order to be able to compute the outcome of Myerson’s mechanism.
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All of the mechanisms designed by us require computing the probabilities qMi .
We first show how to estimate these probabilities within small constant factors:

1. Let ε = 1/3n. Sample N = 4n4 logn/ε2 value profiles from F1 × F2 × · · · × Fn.
For each sample, compute the (ironed) virtual value for each agent, and use
these to compute the outcome of Myerson’s mechanism for that value profile.

2. Estimate the probabilities qMi using the samples. Call the estimates q̂Mi .

3. If q̂Mi < 1/n2, set q̂i = 1/n2, else set q̂i = q̂Mi /(1 − ε). Compute for each i the
value p̂i = Fi−1(1 − q̂i).

4. Find the optimal price in the range [p̂i,∞) to charge to agent i. Call it pi. Let
qi = 1 − Fi(pi).

5. Output the prices computed in the last step and order the agents in order of
decreasing prices.

In order to analyse the performance of this approach, we compare it to a mechanism
that charges agent i the price pMi = Fi

−1(1 − qMi ) but uses the same ordering as
the mechanism above. We first show that the probabilities qi closely estimate the
probabilities qMi .

Lemma 3.19. With probability at least 1 − 2/n, we have q̂i ∈ [qMi , (1 + 3ε)qMi + 2/n2].

Proof. First, for any iwith qMi > 1/n4, using Chernoff bounds we get that

Pr
[∣∣q̂Mi − qMi

∣∣ > εqMi ] 6 2e−ε2qMi N/2 6 2/n2

q̂Mi ∈ (1± ε)qMi in turn implies by definition that qMi 6 q̂i 6 (1 + ε)/(1 − ε)qMi 6

(1 + 3ε)qMi . Therefore we have q̂i ∈ [qMi , (1 + 3ε)qMi ]. On the other hand, for
qMi < 1/n4, by Markov’s inequality, with probability 1 − 1/n2, q̂Mi < 1/n2, and so
q̂i ∈ [qMi , 1/n2]. The lemma now follows by employing the union bound.

Furthermore, conditioned on the event defined in the statement of the above
lemma (call it E), since pMi lies in the range [p̂i,∞), we have that qMi pMi 6 qipi.
This implies that the prices pi give a good estimate on the revenue of Myerson’s
mechanism.



www.manaraa.com

52

Next, we compare the real mechanism S with prices pi to the theoretically
good mechanism S ′ that charges prices pMi . Let S be the set of services for which
q̂Mi < 1/n2. The probability that any of these services is offered in S is at most 1/n.
Conditioned on this event not happening, the probability that a service is offered in
S is no smaller than its counterpart in S ′. Moreover, conditioned on being made an
offer, the revenue from service i is qipi > qMi pMi .

Therefore, conditioned on the event E, the expected revenue of S is at least a
(1 − 1/n) fraction of the expected revenue of S ′. But the event E happens with
probability 1 − 2/n, therefore, we get a (1 − o(1)) approximation to the expected
revenue of S ′.

3.5 Revenue maximization through VCG mechanisms

A consequence of our constant-factor approximation to revenue through SPMs is
that in matroid settings VCG mechanisms with appropriate reserve prices are near-
optimal in terms of revenue. This follows from noting, as we show below, that VCG
mechanisms perform no worse in terms of expected revenue than SPMs with the
same reserve prices. Although VCG mechanisms aim to maximize the social welfare
of the outcome, setting high enough reserve prices allows them to also obtain good
revenue.

Formally, a Vickrey-Clarke-Groves (VCG) mechanism Vp with reserve prices p
sells the set S of services, with vi > pi for all i ∈ S, that maximizes

∑
i∈S vi.

Hartline and Roughgarden (2009) show that in several single-parameter settings
the VCG mechanism with monopoly reserve prices gives a constant factor approx-
imation to revenue. This result holds when all the value distributions satisfy the
so-called monotone hazard rate condition, or with a matroid feasibility constraint
when all the value distributions are regular. Their result does not extend to the
case of matroids with general (non-regular) value distributions. One of the main
questions left open by their work is whether there is some set of reserve prices (not
necessarily equal to the monopoly reserve prices) for which the VCG mechanism
gives a constant factor approximation to revenue in the matroid setting with general
value distributions. We answer this question in the positive. We use the following
fact about matroids.
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Proposition 3.1. Let B1 and B2 be any two independent sets of equal size in a matroid
set system S. Then there is a bijective function g : B1 \ B2 → B2 \ B1 such that for all
e ∈ B1 \ B2, B1 \ {e} ∪ {g(e)} is independent in S.

Theorem 3.20. For any instance of the single-parameter Bayesian mechanism design prob-
lem with a matroid feasibility constraint, there exists a set of reserve prices such that the
expected revenue of the VCG mechanism with those reserve prices is at least half of the
expected revenue of Myerson’s mechanism.

Proof. We prove that when the set system S is a matroid, for any collection of prices
p, the revenue of the SPM Sp is no more than the revenue of the VCG mechanism
Vp. The result then follows from Theorem 3.12.

Fix a value vector v and let A denote the set sold by Sp and B denote the set
sold by Vp. Then, since both mechanisms sell a maximal independent set among
the set of services with vi > pi, we have |A| = |B|. Proposition 3.1 then implies the
existence of a bijection g such that for all e ∈ B \A, B \ {e} ∪ {g(e)} is independent.
This implies that Vp sells e at a price of at least the value of g(e), which is at least
the reserve price pg(e). On the other hand, by definition, the price charged to
any e ∈ B ∩ A is at least pe. Therefore, the revenue of Vp in this case is at least∑
e∈B∩A pe +

∑
e∈B\A pg(e) =

∑
e∈A pe which is equal to the revenue of Sp.

3.6 Discussion

We designed approximately-optimal posted price mechanisms for a variety of single-
parameter settings. The approximation factors we obtain depend on the kind of
feasibility constraint that the seller faces. The exact constants are summarized in
Tables 3.1 and 3.2.

Our approach does not extend beyond matroid and matroid-like settings. How-
ever, it is possible that there is some other class of simple near-optimal mechanisms
for non-matroid single-parameter settings that do not exploit competition among
agents. Such mechanisms may lead to approximately-optimal multi-parameter
mechanisms for a broader class of feasibility constraints.
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Feasibility constraint S Gap from optimal
upper bound lower bound

Uniform matroid, Partition matroid 2 2
Graphical matroid 3 2
Intersection of two part. matroids 5.83 2
Matching with i.i.d. agents 2e/(e− 1) ≈ 3.17 2
Graphical matroid ∩ partition matroid 7.47 2
General matroid O(log k) 2
Non-matroid downward closed - Ω(

logn
log logn)

Table 3.1: A summary of approximation factors for the BSMD achievable through
OPMs. Here k is the rank of S.

Feasibility constraint S Gap from optimal
upper bound lower bound

General matroid 2
√
π/2 ≈ 1.25

Uniform matroid, Partition matroid e/(e− 1) ≈ 1.58 1.25
Intersection of two matroids (BSMD) 3 1.25
Non-matroid downward closed - Ω(logn/ log logn)

Table 3.2: A summary of approximation factors for the BSMD achievable through
SPMs.
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4 Multi-service settings with
unit-demand agents
Suppose that the local organizers for a prominent symposium on computer science
need to arrange for suitable hotel accommodations in the Boston area for the atten-
dees of the conference. There are a number of hotel rooms available with different
features and attendees have preferences over the rooms. The organizers need a
mechanism for soliciting preferences, assigning rooms, and calculating payments.
Fortunately, they have distributional knowledge over the participants’ preferences
(e.g., from similar conferences). This is a stereotypical multi-parameter setting for
mechanism design that, for instance, also arises in most resource allocation problems
in the Internet. What mechanism should the organizers employ to maximize their
objective (e.g., revenue)?

The economic theory of optimal mechanism design is elegant and predictive
in single-parameter settings. Here Myerson’s theory (1981) of virtual valuations
and characterizations of incentive constraints via monotonicity guide the design
of optimal incentive-compatible mechanisms with practical (often non-incentive-
compatible) implementations (Ausubel and Milgrom, 2006). The challenge posed by
multi-parameter settings (e.g., in the likely case that conference attendees, i.e., agents,
have different values for different hotel rooms) is two-fold. First, multi-parameter
settings are unlikely to permit succinct descriptions of optimal mechanisms (McAfee
and McMillan, 1988; Rochet and Chone, 1998; Manelli and Vincent, 2007). Second,
in multi-parameter settings optimal mechanisms are unlikely to have practical
implementations – even asking agents to report their true types across the many
possible outcomes of the mechanism may be impractical. In summary, theory
and practical considerations from optimal mechanism design in single-parameter
settings fail to generalize to multi-parameter settings.

This work approaches these issues through the lens of approximation. Our main
results are simple, practical, approximately optimal mechanisms for a large class of
multi-parameter settings. We consider the multi-parameter setting through a single
parameter analogy wherein each multi-parameter agent is represented by many
independent single-parameter agents (e.g., one for each hotel room). The optimal
revenue for this single-parameter setting is well understood and, due to increased
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competition among agents, upper-bounds that of the original multi-parameter set-
ting. We leverage the fact that the sequential posted-price mechanisms described in
the previous chapter achieve their approximations without inter-agent competition.
This gives a robustness to deviations in modeling assumptions and, for instance,
the same mechanism continues to be approximately optimal in the original multi-
parameter setting. Therefore, our theory for approximately optimal single-parameter
mechanisms generalizes to multi-parameter settings.

In the context of computer science literature this work is an extension of algorith-
mic pricing (see, e.g., Guruswami et al., 2005) to settings with multiple agents; it is
unrelated to the standard computational questions of algorithmic mechanism design
(see, e.g., Lehmann et al., 1999; Nisan and Ronen, 1999). The central problem in
algorithmic pricing can be viewed (for the most part) as Bayesian revenue maxi-
mization in a single agent setting (see, e.g., Guruswami et al., 2005). Algorithmic
pricing is hard to approximate when the agent’s values for different outcomes are
generally correlated (Briest, 2006); however, when the values are independent there
is a 3-approximation (Chawla et al., 2007). In this context, our results improve and
extend the independent case to settings with multiple agents and combinatorial
feasibility constraints. Notice that the challenge in these problems is one imposed by
the multi-parameter incentive constraints and not one from an inherent complexity
of an underlying non-game-theoretic optimization problem. (E.g., in the hotel exam-
ple the underlying optimization problem is simply maximum weighted matching.)
In contrast, most work in algorithmic mechanism design addresses settings where
economic incentives are well understood but the underlying optimization problem
is computationally intractable (e.g., combinatorial auctions (Lehmann et al., 1999)).

While our exposition focuses on revenue maximization, all of our techniques and
results apply equally well to social welfare. Social welfare is unique among objectives
in that designing optimal mechanisms in multi-parameter settings is solved (by
the VCG mechanism). Therefore, the interesting implication of our work on social
welfare maximization is that sequential posted pricing approximates the welfare of
the VCG mechanism and may be more practical.
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4.1 Reducing multi-service instances to single-service
instances

We begin by presenting our general reduction from the multi-parameter unit-
demand mechanism design problem to the single-parameter problem. Using this
reduction we can argue that if there exists an approximately optimal sequential
posted-price mechanism in the single-parameter setting, there also exists one in the
original multi-parameter setting. Understanding the properties of optimal mecha-
nisms in multi-parameter settings is tricky so our approach is based on upper and
lower bounds for single-parameter settings.

There are four main steps to give and instantiate our reduction. They are:

1. (Analogy) Define a single-parameter analog for any multi-parameter setting.

2. (Lower bound) Show that the revenue of the optimal single-dimensional analog
is at least the revenue of the optimal multi-dimensional mechanism.

3. (Reduction) Show that if we had a sequential posted pricing for the single-
dimensional analog, we can convert it into a posted pricing for the multi-
dimensional setting without much loss in performance.

4. (Instantiation) Show for a given multi-dimensional setting that there exist
sequential pricings that approximate the optimal mechanism for the single-
parameter analog.

We describe the analogy and state the lower bound as well as a reduction for
OPMs here. Section 4.2 instantiates the reduction for OPMs in various settings of
interest. While we do not obtain a general purpose reduction from SPMs, as we do
for OPMs, in Section 4.3 we describe SPMs that obtain approximate optimality in
PDSE in many single as well as multi-parameter settings.

The analogy

The main concept behind our reduction is a single-parameter analogy. Consider an
instance I = (I× J, S, F) of the BMUMD with n = |Π| agents and m = |J| services.
The single-parameter analog is the setting we get when we assume that each service
is demanded by a distinct agent, i.e., Ireps = (I, S, F). Formulaically, this analogy
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is trivial; intuitively, it replaces each agent i with |Ji| distinct agents (called repre-
sentatives or “reps” hereafter). Each rep is interested in a single service j ∈ Ji and
behaves independently of (and potentially to the detriment of) other reps. Notice
that Ireps hasm = |J| agents and services.

Lower bound

Notice that Ireps is similar to I except that it involves more competition (among
different reps of the same multi-parameter agent). Therefore it is natural to expect
that a seller can obtain more revenue in the instance Ireps than in I. The following
lemma formalizes this.

Lemma 4.1. Let A be any individually rational and incentive compatible deterministic
mechanism for instance I of the BMUMD. Then the expected revenue of A, RA, is no more
than the expected revenue of Myerson’s mechanism for the single-parameter instance Ireps.

Proof. Truthful mechanisms in multi-parameter settings satisfy the weak monotonic-
ity condition defined below. For a Mechanism M, and a value vector v, let Mj(v)
denote the probability with whichM provides service j at value vector v.

Definition 4.2. A mechanism M satisfies weak monotonicity if for any agent i and any
two types v1 and v2 with v1

j = v
2
j for all j ∈ J \ Ji, the following holds:

∑
j∈Ji

(
Mj(v1)v1

j +Mj(v2)v2
j

)
>
∑
j∈Ji

(
Mj(v2)v1

j +Mj(v1)v2
j

)
We show that we can construct a truthful mechanism Areps for the instance Ireps

with revenue no less than that of A. The lemma then follows from the optimality of
Myerson’s mechanism. Given a vector of values v, the mechanism Areps allocates to
the set that A allocates to in I for the same value vector v. We first claim that the
allocation rule of Areps is monotone non-decreasing in any vj, implying that there
exists a payment rule that makes the mechanism truthful. To prove the claim, fix
any agent i and j ∈ Ji, and consider two value vectors v1 and v2 with v1

j = x, v2
j = y,

and v1
j ′ = v2

j ′ for j ′ 6= j. Let αx and αy denote the probabilities of serving agent i
with service j under the two value vectors respectively, and let βx and βy denote
the total value that agent i obtains from other services j ′ ∈ Ji, j ′ 6= j, in the two cases
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respectively. Then the weak-monotonicity (Definition 4.2) of A implies that

(xαx + βx) + (yαy + βy) > (xαy + βy) + (yαx + βx).

This is equivalent to (x− y)(αx − αy) > 0 and so the claim holds.
It remains to prove that the expected revenue of Areps given Ireps is no less than

the expected revenue of A given I. Note that any deterministic multi-parameter
mechanism can be interpreted as offering a price menu with one price for each
item or service to each agent as a function of other agents’ bids (Wilson, 1997). The
agent then chooses the item or service that brings her the most utility. Given this
characterization, suppose that for a fixed set v of values, mechanism A offers a price
menu with prices p to agent i. Then, it draws a revenue of pj from i whenever
service j is offered. On the other hand, mechanism Areps charges the agent j the
minimum amount it needs to bid to be served, which is no less than pj, as A is
individually rational.

A reduction for OPMs

The main advantage of a seller in the single-parameter analog is increased competi-
tion. Intuitively, if we can design mechanisms for the single-parameter setting that
do not exploit competition, then it is reasonable to expect them to obtain similar
performance in the multi-dimensional setting. Here, sequential posted pricings are
exactly what is needed.

Theorem 4.3. If OPM p is an α-approximation to the optimal mechanism for the single-
parameter setting Ireps then it is an α-approximation in PDSE to the optimal mechanism for
the multi-parameter setting I.

Proof. Let p be an α-approximate OPM for Ireps. Consider its performance on I. For a
fixed instantiation v of values let σ be any Π-respecting ordering that minimizes the
revenue of the mechanism. Note that whenever the mechanism (p,σ) offers a service
to agent i it is a dominant strategy for the agent to accept the service if and only if the
agent gets non-negative value from the service. This is because any future offers that
the agent gets can only bring him lower utility. Therefore, the sequence of offers and
outcome of (p,σ) is identical under I and Ireps, and, R(p,σ)

I (v) = R
(p,σ)
Ireps (v) > R

(p)
Ireps(v).
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Therefore, the revenue of p in the multi-parameter setting is no less than its revenue
in the single-parameter setting. Then the result follows from Lemma 4.1.

4.2 Approximation through order-oblivious
sequential pricings

In this section we instantiate the reduction described in Section 4.1 for several
different settings. We begin by developing our approach in the context of a “k item
auction” setting, obtaining a (tight) 2-approximation in that setting. We then expand
this approach to obtain constant-factor approximations for other matroids as well
as matroid intersection constraints. For example, we show that in a setting with
heterogeneous items and multiple unit-demand agents with identically distributed
values (that we call the “supermarket setting”), there exists a pricing of the items
that obtains a 2e/(e− 1) approximation to the optimal mechanism.

Our most general positive result is a non-constructive O(log k)-approximation
for arbitrary matroids, where k is the rank of the matroid. On the negative side, we
show that the gap between OPMs and the optimal achievable revenue can be as large
as logn

log logn for non-matroid feasibility constraints, where n is the number of agents.
Table 4.1 summarizes the approximation factors for all the settings considered.

4.2.1 Intersections of partition matroids

In this section, as well as in Sections 4.2.2 and 4.2.3, we look at instances I = (I, S, F)
where S is given by the intersection S = S1 ∩ S2 of a partition matroid S1 with some
other matroid constraint S2. These instances arise as single-parameter analogs of
instances (I× J, S, F) with S1 formalizing the unit-demand constraint over the agents
and S2 representing an unrelated matroid constraint over services (e.g. a supply
constraint).

Our approach is to first use Lemma 3.4 to show that we can achieve good revenue
under just the constraint S1, and then bound the impact of applying the additional
constraint S2 on this revenue. We develop this approach in the settings where S2 is
also a partition matroid. In Section 4.2.3 we extend this approach to more general
matroids S2.
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We begin by extending Corollary 3.6 to show that for the feasibility constraint
S1, for any constant α 6 1, we can construct prices pα such that the OPM pα is
approximately optimal for (J, S1, F) and provides service to an agent with probability
a factor of α smaller than the corresponding probability in Myerson’s mechanism.
By chosing an appropriate αwe can then ensure that the additional constraint S2

minimally effects the OPM’s revenue.

Lemma 4.4. Let I = (I, S, F) be an instance of the BSMD where S = S1 ∩ S2 and S1 is a
partition matroid. Consider a modified instance I ′ = (J, S1, F). Then, for each α ∈ (0, 1]
there exist prices p such that qj = 1 − Fj(pj) 6 αqMj for all j ∈ J, and,

R
p
I ′ >

(
α

1 + α

)
RM

I .

Proof. Let qMj , pMj be the probabilities and associated prices with which Myerson’s
mechanism provides service j ∈ J under the full constraint S. Fix α ∈ (0, 1], and
consider the modified set of probabilities and prices

qj
′ = αqMj

pj
′ = Fj

−1(1 − qj
′) > pMj .

Let X ⊂ J be one of the uniform matroids making up S1, and let k be its rank. Then
we know that

∑
j∈X qj

′ 6 αk, and so applying Lemma 3.4 to each such X in turn
with prices p ′ will produce prices p such that

R
p
I ′ >

1
1 + α

∑
j∈J

pj
′qj
′ >

α

1 + α

∑
j∈J

pMj q
M
j .

Lemma 3.2 then implies the claimed bound.

Next, we show that when we consider the full constraint S, expected revenue is
not much less than we would get under just S1.

Theorem 4.5. Let I = (I, S, F) be an instance of the BSMD with S being an intersection of
two partition matroids. Then, there exists a set of prices p such that Rp

I > 1
5.83R

M
I .

Proof. Let S1 and S2 be the two partition matroids making up S. Let I ′ = (J, S1, F)
and let p be the prices obtained by applying Lemma 4.4 to I for some α ∈ (0, 1] to be
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picked later. Let σ be the arbitrary order in which the OPM offers services to agents.
For each service j ∈ Jwe define the following events:

• Xj is the event that service jwould be sold by the OPM p in the setting I ′; and

• Yj is the event that service j is not blocked in matroid S2 when it is reached by
the OPM p in the ordering σ, that is, the set of services sold so far along with j
is independent in S2.

Then, we have that

R
p
I > E

[∑
j∈J

pj Pr[Xj|Yj]Pr[Yj]

]
> E

[∑
j∈J

pj Pr[Xj]Pr[Yj]

]
,

where the last inequality follows from the fact that conditioning on previous offers
being rejected can only increase the probability we may make the current offer.

Now, as in the proof of Theorem 3.3, we can apply Markov’s Inequality to see
that for all j ∈ Jwe have that Pr[Yj] > (1 − α). Thus, we have that

R
p
I > (1 − α)E

[∑
j∈J

pj Pr[Xj]

]
= (1 − α)R

p
I ′ > (1 − α)

(
α

1 + α

)
RM

I .

Choosing α =
√

2 − 1 yields an approximation factor of (
√

2 − 1)−2 ≈ 5.83.

4.2.2 Supermarket setting

We now consider a special case of the matroid intersection setting studied above,
where agents have identically distributed types. Specifically, we consider the setting
of a supermarket offering a number of different items indexed by set T and with
different multiplicities (supply limits). The set J of services is simply I × T . Note
that each service j ∈ J is a tuple (i, t) corresponding to agent i and item t. We
use vit to denote the value of agent i for item t ∈ T . The feasibility constraint
S is an intersection of two partition matroids S1 and S2, where S1 represents the
unit-demand constraint over agents (i.e. every agent is allocated at most one item),
and S2 represents the supply limits over items (i.e. every item is allocated to at most
as many agents as the number of its units available). We show that when the values
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vit for different agents and the same item t are distributed identically, we can obtain
an improved 2e/(e− 1) ≈ 3.17 approximation.

The improvement in approximation factor arises from the following improvement
to Theorem 3.5.

Lemma 4.6. Let I = (I, S, F) be an instance of the BSMD where S is a k-uniform matroid
and all the distributions Fi are identical and independent. Then the set of prices p with
pi = p

M
i obtains Rp

I > e−1
e
RM

I .

Proof. Note that since the distributions are all identical, the probabilities qMi and
prices pMi can be assumed to be identical. In the rest of this proof we will use p to
denote the common price, but will not use the fact that the probabilities qMi are
identical.

We first prove the lemma for the special case of k = 1. Let
∑
i qi = s 6 1. Then

R
p
I = p(Pr[Some agent is served])

= p(1 − Pr[No agent is served])

= p

(
1 −

n∏
i=1

(1 − qi)

)

> p

(
1 −

n∏
i=1

(1 − s/n)

)
(4.1)

> (1 − 1/e)ps = (1 − 1/e)
∑
i

piqi,

where (4.1) follows since the product is maximized when the qi’s are all equal. This
proves the theorem when distributions are regular.

To prove the lemma for general k, we note that
∑
i qi = s 6 k. Let q ′ = qi/k

and p ′ = F−1(1 − qi
′). Consider the OPM p ′ on the given instance of the BSMD but

with a 1-uniform matroid constraint instead of a k-uniform one. Then the analysis
in the preceding paragraph shows that the expected revenue of this BSMD is at least
(1 − 1/e)

∑
i p
′q ′. Therefore, the probability with which the OPM sells an item is at

least (1 − 1/e)
∑
i qi/k. We now claim that the OPM p with the k-uniform matroid

constraint sells at least k times as many items in expectation, which implies the
result.

We now prove the main result of this section.
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Theorem 4.7. Let I = (I, S, F) be an instance of the BSMD where S represents an instance
of the matching setting described above. Then, there exists a set of prices p such that
R

p
I > e−1

2e RM
I .

Proof. First, note that by the assumption that agents are identical, we have that
prices and probabilities in Myerson’s are constant across agents. Let S1 and S2 by
the matroids arising from customers being unit-demand and items having limited
supply, respectively. Furthermore, if we apply Lemma 4.4 to I with some fixed α
and S1, the prices p it provides will also be constant across agents. So for all i, j we
have pij = pj and qij = qj, some pj,qj. Let cij be the probability we could offer
item j to agent i under just S2. Since there is no interaction between the uniform
matroids making up S2, and prices are constant within each uniform matroid, we
can apply Theorem 3.15 to get that for each item j∑

i

qijpijcij > (1 − 1/e)
∑
i

qijpij = qjpj(1 − 1/e)n,

implying that ∑
i

cij > (1 − 1/e)n.

Then, if we define Xij and Yij as in the proof of Theorem 4.5, we can see that

Rp >
∑
i

∑
j

E[Xijpij]Pr[Yij = 1]

=
∑
j

E[Xijpij]
∑
i

Pr[Yij = 1]

>
∑
j

E[Xijpij]
∑
i

cij (4.2)

>
∑
j

E[Xijpij]n(1 − 1/e)

= (1 − 1/e)
∑
i

∑
j

E[Xijpij]

= (1 − 1/e)Rp
I ′ .

Note that (4.2) follows because we know that the cij’s decrease with i, and failing
to make some offers because of the additional constraint S1 can only improve the
probability we can offer an item to a later agent.
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Combining the above with Lemma 4.4 yields

R
p
I >

(e− 1)α
e(1 + α)

RM
I ;

choosing α = 1 yields the claimed approximation factor of 2e/(e− 1) ≈ 3.164.

4.2.3 Intersection of graphical matroid and a partition matroid

Consider the instance (I, S, F) of the BSMD, where S is an intersection of a graphical
matroid and a partition matroid Such an instance arises as the single-parameter
analog Ireps of the following BMUMD instance: consider a graph G = (V ,E) where
agents have independent values for different edges and are interested in buying one
edge each; the seller can allocate any forest in the graph.

Theorem 4.8. Let I = (I, S, F) be an instance of the BSMD with S being an intersection
of graphical matroid and a partition matroid. Then there is a COPM (p, S ′), where S ′ is a
partition matroid, such that Rp,S ′

I > 1
7.47R

M
I .

Proof. Note that though the feasibility constraint we are facing is the intersection
of a graphical matroid and partition matroid (from the unit demand constraint),
we can view the feasibility constraint as if it was an intersection of two partition
matroids. This follows from the proof of Theorem 3.7, where we showed that
graphical matroids admit a COPM where the constrained set system is a union
of 1-uniform matroids i.e., a partition matroid. The total probability mass of the
elements of each 1-uniform matroid is at most 2. Fix α ∈ (0, 1], and consider trying
to apply Lemma 4.4 to I with α and this partition matroid. The only change would
be in the invocation of Lemma 3.4, where instead of bounding the sum of qj within
a part as the rank of the part, we now can only bound it by twice that. Thus, the
proof will go through exactly as before, but with the modified final bound of

R
p
I ′ >

(
α

1 + 2α

)
RM

I .

Proceeding as in the proof of Theorem 4.5 then gives us that

R
p
I > (1 − α)

(
α

1 + 2α

)
RM

I ;
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choosing α = (
√

3− 1)/2 yields the claimed approximation factor of (1−
√

3/2)−1 ≈
7.47.

4.3 Approximation through order-specifying
sequential pricings

In this section we show that we can achieve much better approximations for some
settings by picking the right ordering σ over offers, that is, through sequenced
posted-price mechanisms. While there is no direct reduction from SPMs in multi-
parameter settings to SPMs in single-parameter settings analogous to Theorem 4.3,
we show that for matroid and matroid intersection settings our results carry over in
an approximation preserving way to multi-parameter instances as well.

We begin with a 2 approximation to single-parameter instances with a general
matroid feasibility constraint, and show an improved 1.58 approximation for the
special cases of uniform and partition matriods. We then describe a 3 approxima-
tion for general matroid intersection. We conclude this section by proving an 8
approximation in PDSE to multi-parameter instances with a general matroid in-
tersection constraint. Table 4.2 summarizes the approximation factors for all the
settings considered.

4.3.1 BMUMD with a matroid intersection constraint

Recall that Theorems 4.3 and 4.5 together show that we can achieve a constant
factor approximation through OPMs to instances of the BMUMD with a feasibility
constraint that is an intersection of two partition matroids. We now extend this result
to general matroid intersections and combinatorial auctions with small bundles,
albeit through SPMs in a slightly weaker solution concept — partial dominant-
strategy implementation.

The prices and ordering in our approximately optimal SPM is picked in a manner
similar to the one employed in Section 3.3.1 for matroids. Specifically, let I =

(I× J, S, F) be the instance of BMUMD that we are interested in. Assume, to begin
with, that all the distributions Fj are regular. Consider the instance Ireps = (I, S, F),
and letqMj be the probability with which the optimal truthful mechanism (Myerson’s
mechanism) allocates service j in that setting. Let pMj = Fj

−1(1 − qMj ). We define qj
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to be qMj /2 and pj = Fj
−1(1 − qj). Let σ be the order of decreasing prices pj over

the services. Our approximately optimal SPM for I is (p,σ).

Theorem 4.9. Given any instance I = (I× J, S, F) of the BMUMD, if S is a matroid
intersection set system, then the SPM (p,σ) described above is an 8-approximation in PDSE
to the revenue of the optimal incentive compatible mechanism for I. Given an instance of
a multi-parameter combinatorial auction with known bundles of size 2, the SPM (p,σ)
implements an 8-approximation in PDSE.

Proof. Let the pricing p and ordering σ be as defined above. Recall that Lemmas 3.2
and 4.1 together imply that the revenue of any incentive compatible mechanism for
I is bounded above by

∑
j p
M
j q

M
j 6 2

∑
j pjqj.

Now consider the SPM (p,σ). We say that an agent i desires a service j ∈ Ji if
vj > pj, and i uniquely desires j if j is the only service in Ji with that property. As
noted in Section 3.1.2, for an agent that uniquely desires a service, sincere bidding
is a (weakly) dominant strategy. We first note that for every agent i, with proba-
bility 1/2, i bids sincerely. This follows from Markov’s inequality by noting that∑
j∈Ji Pr[i desires j] =

∑
j∈Ji qj = 1/2

∑
j∈Ji q

M
j 6 1/2.

Now divide the set of all services into three groups—S, the set of sold services,
B the set of services that are desired by their corresponding agents but “blocked”
by services in S, and U the set of services that are desired by their corresponding
agents and not in sets S or B. Note that these sets S, B, and U are random variables
depending on the instantiation of agents’ values. Then our observation above
implies that services in U are not uniquely desired. Now, the expected total price
in the union of the sets S, B and U is exactly

∑
j pjqj. Moreover, every desired

service is uniquely desired with probability at least 1/2; therefore, the expected
total price in U is at most half the total price of all desired services, that is, at most
1/2
∑
j pjqj. Finally, following the proof of Theorem 3.12, the expected total price

in B conditioned on S is at most the total price contained in S. Therefore, putting
everything together we get that the expected total price obtained from S is at least
1/4
∑
j pjqj. By our choice of p and q, this is an 8-approximation.

When the distributions Fj are non-regular, we pick the prices pj randomly as
suggested by Lemma 3.2, such that the probability that service j is accepted if
offered a randomized price is exactly qMj /2, and RM

Ireps is bounded from above by
2
∑
j E [pjqj]. The order σ is one where services are offered in the decreasing order of
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their expected prices. The instantiation of price for a service is deferred till the service
is offered. Then along the lines of the proof of Theorem 3.12, the expected total price
in U is at most 1/2

∑
j E [pjqj], and, the expected total price in B (expectation over

the values as well as the randomization over prices), conditioned on S, is at most
the expected total price contained in S (expectation over the randomization over
prices). Thus, the expected total price contained in S is at least 1/4

∑
j E [pjqj].

The argument for the combinatorial auction setting is identical and based on
Theorem 3.18. We omit it for brevity.

4.4 Discussion

We presented constant factor approximations to revenue for several classes of multi-
parameter mechanism design problems by leveraging the approximately-optimal
posted price mechanisms of Chapter 3 for single-parameter settings. The approxi-
mation factors we obtain depend on the kind of feasibility constraint that the seller
faces. The exact constants are summarized in Tables 4.1 and 4.2. Note that the
first is, in fact, identical to Table 3.1 since OPMs translate from single-parameter to
multi-parameter settings with no loss in approximation factor.

While these approximation factors are with respect to the optimal deterministic
incentive compatible mechanism, in the next chapter we show that (slightly worse)
constant-factor approximation guarantees can be obtained against the optimal ran-
domized incentive compatible mechanism as well.

More generally, two important assumptions underlie our work: (1) agents are unit-
demand, and (2) their values for different services are distributed independently. In
the absence of either of these assumptions the upper bound on the optimal revenue
based on the single-parameter setting with representatives does not remain valid.
An important open question is to design a reasonably tight upper bound in those
cases, and use it to approximate the optimal mechanism.
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Feasibility constraint S Gap from optimal
upper bound lower bound

Uniform matroid, Partition matroid 2 2
Graphical matroid 3 2
Intersection of two part. matroids 5.83 2
Matching with i.i.d. agents 2e/(e− 1) ≈ 3.17 2
Graphical matroid ∩ partition matroid 7.47 2
General matroid O(log k) 2
Non-matroid downward closed - Ω(

logn
log logn)

Table 4.1: A summary of approximation factors for the BMUMD achievable through
OPMs. Here k is the rank of S.

Feasibility constraint S Gap from optimal
upper bound lower bound

General matroid 2
√
π/2 ≈ 1.25

Uniform matroid, Partition matroid e/(e− 1) ≈ 1.58 1.25
Intersection of two matroids (BMUMD) 8 1.25
Non-matroid downward closed - Ω(logn/ log logn)

Table 4.2: A summary of approximation factors for the BMUMD achievable through
SPMs.
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5 The power of randomization in
multi-service settings
A fundamental problem in mechanism design is to characterize the optimal selling
strategy for a monopolist trying to maximize his revenue. One of the big successes
in this area is Myerson’s characterization (1981) of the optimal mechanism in set-
tings where buyers’ types are single-dimensional. The optimal mechanism can
be described in simple terms: it is a maximizer of ironed virtual values, weakly
monotone transformations of agents’ values. Remarkably, the optimal mechanism is
deterministic. For example, the optimal selling strategy for a single-good monopolist
facing a single buyer is to offer the buyer a take-it-or-leave-it price that depends on
the value distribution of the buyer. Unfortunately, as we move away from the single-
parameter setting, the design of optimal mechanisms becomes far more complex.
Manelli and Vincent (2007) noted that the class of all mechanisms that are optimal for
some distribution of agent types includes nearly all mechanisms1; so no nontrivial
characterization of optimal mechanisms is possible. In particular, this class includes
mechanisms that use randomness. Thanassoulis (2004) gave specific examples of
settings where randomized mechanisms are strictly better than deterministic ones.
This begs the question: to what extent is randomness useful for revenue maximization?
Are deterministic mechanisms near-optimal in multi-parameter settings as well?

In this chapter we investigate the power of randomness in the context of the
Bayesian mulit-parameter unit-demand mechanism design problm. To answer our
questions in the BMUMD we must first understand the structure of randomized
mechanisms in such multi-dimensional settings. In the context of a single unit-
demand agent and a seller offering multiple items, any deterministic mechanism is
simply a price for each of the items with the agent picking the one that maximizes
her utility (her value for the item minus its price). Likewise, randomized mecha-
nisms can be thought of as pricings for distributions or convex combinations over
items. These convex combinations are called lotteries. A risk-neutral buyer with
a quasilinear utility function buys the lottery that maximizes his expected value
minus the price of the lottery.

1This holds even if we restrict the type distributions to be independent across agents and items,
the setting we consider in this chapter.
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Figure 5.1: An example from Thanassoulis (2004) contrasting the optimal item and
lottery pricings. The regions R1, R2, and RLot denote the sets of valuations at which
the agent buys item 1, item 2, and the (1/2, 1/2) lottery, respectively.

The following example due to Thanassoulis (2004) illustrates how lotteries work.
Suppose that a seller offers two items for sale to a single buyer, and that the buyer’s
value for each of the items is independently and uniformly distributed in the interval
[5, 6]. The optimal deterministic mechanism for the seller is to simply price each of
the items at p∗ = $5.097 (see Figure 5.1). In a randomized mechanism, the seller
may in addition price a (1/2, 1/2) distribution over the two items at a slightly lower
price of p ′ = $5.057. If the buyer purchases this lottery, the seller tosses a coin and
allocates the first item to her with probability 1/2 and the second with probability
1/2. A buyer that is nearly indifferent between the two items would choose to buy
the lottery because of its lower cost, rather than either one of the items. While the
seller loses some revenue by selling the lower priced lottery with some probability,
he gains by selling to a larger segment of the market (those that cannot afford either
of the individual items but can afford the lower priced lottery). In this example
the gain is more than the loss, so that introducing the lottery improves the seller’s
revenue.

Lotteries are thus a mechanism for sellers to screen buyers on their relative
preferences for different items. For example, car dealerships often offer a discount
on new cars when buyers do not have a strict preference for color. Likewise many
travel agencies offer discounted vacation packages in which the vendor providing
the service is unknown and depends on the demand at the time that the vacation is
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undertaken. This partitions the market into buyers that are indifferent among the
different colors or vendors and buyers that greatly prefer some of the options over
others.

In general, a randomized mechanism can offer to the buyer a menu of prices for
arbitrarily many lotteries. We call such a menu a lottery pricing, and likewise a deter-
ministic pricing an item pricing. In multiple-agent settings randomized mechanisms
can be more complicated, but when viewed from the perspective of a single buyer
they behave like a lottery pricing.

From the point of view of an optimizing designer, knowing the quantitative
benefit from using lotteries can be crucial. On the one hand, optimizing revenue
over the space of all lottery pricings is easier than optimizing over the space of
all item pricings—Briest et al. (2010) show that the former can be done by solving
a linear program. On the other hand, in general the optimal lottery pricing can
contain as many different options on the menu as the number of different buyer
types in the market. This may be infeasible to implement from a practical point
of view. However, optimizing revenue over menus with few options (e.g., a single
lottery in addition to item prices) appears to be harder than finding the optimal
item pricing. If lotteries offer only a marginal improvement in revenue over item
pricings, then the seller may be better off just using item prices.

Until recently, the largest gap known between item pricings and lottery pricings
for a single agent was a gap of 3/2 due to Pavlov (2006); for the special case where
values for different items are independent, Thanassoulis (2004) gave the best gap
example with a gap of 1.1. Briest et al. (2010) showed that in single-agent settings
the gap between lottery pricings and item pricings can in fact be unbounded even
with only 4 items. Specifically, they construct a discrete distribution over the agent’s
values, with each pair of value vectors having a large “angle” between them (and
therefore representing different segments of the market). Then a lottery pricing, by
offering different convex combinations over items to different segments, can obtain
nearly the entire social value in the system, whereas a deterministic item pricing
cannot price discriminate as effectively. Briest et al. show that when the number of
items is at least 4, an unlimited number of such value vectors can be packed into
the distribution, leading to an unbounded gap between the revenues of the optimal
item and lottery pricings. The value distributions they construct, however, are quite
unnatural with the values of different items being correlated in a specific way.
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In this work we show that in single-agent problems with independent values (the setting
considered by Thanassoulis) the revenue obtained by lottery pricings is no more than four
times the revenue obtained by item pricings. We extend this result to settings involving
multiple agents and general supply constraints, as well as a limited kind of cor-
relation between values, again obtaining constant factor bounds on the benefit of
randomness. While the constant factors we achieve are large in some cases, our
results are in sharp contrast to the findings of Briest et al. where the improvement
offered by lottery pricings is nearly as large as the number of different agent types in
the market. Informally this implies that (when values are uncorrelated) randomized
mechanisms cannot offer arbitrarily large improvements over deterministic ones.
We believe that the factors we achieve can be improved considerably and the gap
between randomized and deterministic mechanisms is much smaller in practice.

5.1 Warm up: Single-agent setting

In this section, we introduce our approach through the following fundamental
BMUMD setting: we have a seller offering n items for sale to a single unit-demand
agent. Recall, such an agent is interested in buying at most one item. For intuition,
think of a buyer trying to choose which car or which laptop to buy. Let n be the
number of available options, and v1, . . . , vn be the values the agent places on them,
which are independently drawn from distributions F1, . . . , Fn, respectively.

Our goal is to study the gap between the revenue achievable from an optimal
randomized truthful mechanism and that achievable from an optimal deterministic
truthful mechanism. In this simple single-agent setting, deterministic truthful
mechanisms are item pricings: the seller picks a vector of prices p for the items, and
the buyer purchases the item i that maximizes her utility, vi − pi, or buys nothing if
all items provide negative utility.

On the other hand, randomized truthful mechanisms can be interpreted as
lottery pricings that are defined as follows. An n-dimensional lottery is a vector
` = (q1, · · · ,qn,p) where p is the price of the lottery and (q1, · · · ,qn) is a probability
distribution over the n items,

∑
i∈[n] qi 6 1. A lottery pricing L = {`1, `2, · · · } is a

menu of (an arbitrary number of) lotteries offered by the seller to the buyer. As for
item pricings, the buyer purchases the lottery that maximizes her utility. We assume
that the agent is risk-neutral, and so her utility from a lottery ` = (q1, · · · ,qn,p) is
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given by
∑
i∈[n] qivi − p.

Characterizing and understanding optimal item and lottery pricings proves
quite difficult. In order to relate them, we follow the same approach as in Chapter 4:
we relate both to the (revenue) optimal mechanism for a related single-parameter
instance, which we do understand well. In the simple single-agent case we are
currently considering, the appropriate single-parameter problem to consider is a
single-item, n-agent auction, where agent i has a value vi for the item under sale.
As before, vi is drawn independently from Fi. We use the same terminology as in
Chapter 4, and call agent i in this new setting a representative of the multi-parameter
agent in the original setting (rep i for short). We call an instance of the original
problem I and the corresponding instance of the new single-item auction problem
Ireps.

Item pricings for I and deterministic mechanisms for Ireps are closely related,
and in particular, their input-output behavior is identical. Both accept a value vector
v drawn from the product distribution F =

∏
i Fi as input and return as output an

index i and a price to be paid. Not only do the two have similar structure, but their
performance is closely related as well: Theorems 4.1 and 3.5 show that the revenue
of the optimal (deterministic) mechanism for Ireps lies between the revenue of the
optimal item pricing for I and twice this value, respectively. Note, however, that in
single-parameter settings such as Ireps randomization gives no increase in revenue;
the overall optimal mechanism is deterministic.

Recall that our goal is to understand how much the extra power lottery pricings
give the designer can increase revenue relative to item pricings. As already men-
tioned, however, we know that the revenues of item pricings for I and mechanisms
for Ireps are good approximations of each other, and so it is sufficient to relate the
revenue of lottery pricings for I to mechanisms for Ireps. While it remains the case
that the input-output behavior of lottery pricings for I and randomized mechanisms
for Ireps are the same, it becomes much harder to relate their revenues than it was
in the deterministic case. The main challenge is to apportion the price of a lottery
across reps in such a way that a large fraction of the original payment is recovered,
while at the same time ensuring the mechanism is incentive compatible for the reps.

In order to make the issue of relating revenues between lottery pricings for I
and randomized mechanisms for Ireps, we begin by considering the most natural
candidate mechanism to relate to a given lottery pricing. For any lottery pricing
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L, a natural candidate mechanism for Ireps based on L is one that implements the
same allocation rule as L: at a value vector v, if L allocates an item i to the multi-
parameter agent with probability qi, then the mechanism for Ireps would allocate
the item to rep iwith probability qi. We note that this allocation rule is monotone
nondecreasing in the values vi: if the multi-parameter agent increases his value for
item i keeping other values the same, then he may switch to a different lottery that
allocates item i with a higher probability, but never to one with a lower probability
for item i. Therefore, by Theorem 2.3 there exists a truthful payment rule for this
allocation rule in the Ireps setting, and furthermore this pricing rule is unique up to
additive shifts. Call the resulting mechanism AL. We normalize payments in this
mechanism so that a rep with value 0 always pays 0.

Ideally we would like to claim that the revenue of AL is close to that of L. As the
following simple example shows, however, this is not always the case. Let n = 2 and
consider a lottery pricing consisting of a single lottery ` = (1/2, 1/2, 1). Whenever
the agent has a value of 2 for any one of the items, he buys the lottery and pays 1;
this holds in particular when the agent values both items at 2. Now consider the
corresponding mechanism AL. Whenever any one of the reps values the item at
2, both reps get the item with a 1/2 probability each; in particular the other rep
gets the item with a 1/2 probability regardless of her report. So when both of the
reps value the item at 2, neither pays anything! Now, if the values are (2, 2) with
probability 1, the lottery pricing L gets a revenue of 1, whereas AL gets a revenue
of 0. A key feature of this example is that this disparity in revenues occurs only at
value vectors where both reps have sufficiently high values. But these are precisely
the value vectors where another mechanism for Ireps obtains good revenue, namely
the Vickrey auction. Intuitively, we should be able to bound the loss in revenue
from AL (relative to L) by the revenue of the Vickrey auction V. As we shall next
show, this intuition continues to hold even for more complicated instances of I than
the simple example we discussed here.

We now formally prove that the combined revenues of AL and the Vickrey
auction can be related to the revenue of L. Let RM(v) denote the revenue of a
mechanismM at value vector v and RMi (v) denote the contribution of rep i to this
revenue. Then we claim for all v:

RL(v) 6 RAL

(v) + RV(v).
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As an intermediate step towards proving this claim, it will help to first study
a related mechanism ÃL that has the same allocation rule as AL but a different
(shifted) pricing rule that follows the lottery pricing more closely. Given the lottery
pricing L, the mechanism ÃL forms a one-dimensional lottery pricing for each of the
n reps in Ireps. Each rep then selects her utility maximizing lottery and purchases
it (or elects to buy nothing, if no option yields nonnegative utility). We denote the
lottery pricing offered to rep i as Li, and construct it as follows. For a given v−i and
` = (q1,q2, . . . ,qn,p) ∈ L, we add a lottery `i = (q ′,p ′) to Li, where

q ′ = qi; and

p ′ = p−
∑
j6=i

qjvj.

Note that since ÃL offers each rep i a menu of options that does not depend
on that rep’s reported value vi, we may immediately conclude that ÃL is truthful.
Since a rep always has the option to reject all of the offered lotteries, receiving and
paying nothing, we may also conclude that every rep always gets nonnegative utility
from ÃL (i.e. it satisfies individual rationality). The following lemma shows that
ÃL implements the same allocation rule as L (and thus AL).

Lemma 5.1. For any valuation vector v, if the agent in I chooses lottery ` from L, then each
rep i in Ireps will select the lottery `i corresponding to ` in ÃL.

Proof. Fix some v and some i. Now, for any `i ∈ Li, we can write the utility that rep
i receives from it as

q ′vi − p
′ = qivi −

(
p−
∑
j6=i

qjvj

)
=
∑
j

qjvj − p,

precisely the utility the original agent received from the lottery ` that `i was derived
from. Since both the original agent and the rep are utility maximizers, the result
follows.

We can now relate the revenue obtained by ÃL to that of L.

Lemma 5.2. For any fixed valuation vector v, there exists an agent i∗ such that RL(v) 6
RÃL

i∗ (v) + RV(v), where V denotes Vickrey’s auction.
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Proof. Fix a valuation vector v. Let i∗ = argmaxi vi. Let ` = (q1, . . . ,qn,p) be the
lottery an agent with valuation vector v would select from L in I. Then, RL(v) is
precisely p, and so we can see that

RL(v) =

(
p−
∑
i 6=i∗

qivi

)
+
∑
i 6=i∗

qivi

= RÃL

i∗ (v) +
∑
i 6=i∗

qivi

6 RÃL

i∗ (v) + max
i 6=i∗

vi,

where the second equality follows from Lemma 5.1 and the definition of ÃL, and
the inequality follows from the fact that

∑
i qi 6 1 always. Since the revenue of

Vickrey’s auction for the setting Ireps on valuation vector v is precisely maxi 6=i∗ vi,
the claim follows.

Note that while the payment rule of ÃL makes it easy to relate its revenue from
some agent to the total revenue of L, we cannot conclude that RL is at most the
total revenue of ÃL plus RV, because ÃL may charge some reps negative prices,
i.e. compensate them, to align their preferences with those of the multi-parameter
agent. Instead, we use the fact that ÃL and AL have identical allocation rules, and
so have closely related payment rules.

In particular, Lemma 5.1 and Theorem 2.3 imply that the mechanisms ÃL and AL

differ only by the payments they charge the reps at value 0. Since ÃL is individually
rational, it must charge a nonpositive payment to rep i at vi = 0. Therefore, AL

charges payments that are no smaller than the payments in ÃL, and obtains more
revenue than the latter. Noting that AL always charges nonnegative payments, we
conclude the following.

Lemma 5.3. For any fixed valuation vector v and rep i, we have that RÃL

i (v) 6 RAL

i (v) 6
RAL

(v).

Lemmas 5.2 and 5.3 imply that RL 6 RAL

+ RV 6 2RM where M is the optimal
mechanism for Ireps. We can combine this with Theorems 4.3 and 3.5 from the previ-
ous chapters (which give an improvement on a corresponding theorem of Chawla
et al. (2007)) to get the main result of this section: when values are distributed ac-
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cording to a product distribution, for any lottery pricing there exists an item pricing
whose expected revenue is at least one fourth that of the lottery pricing.

Theorem 5.4. Given a setting I where F is a product distribution, there exists an item
pricing p for the setting I whose expected revenue is at least 1/4 that of any lottery pricing
for the setting I.

Pricings with a single lottery

As we noted earlier, optimal lottery pricings can contain as many lotteries as the
number of different buyer types in the market. In many practical settings, offering
such large menus is unreasonable, and the seller may instead want to construct a
menu with a single lottery in addition to item prices. A natural question is whether
we can improve the bound in Theorem 5.4 by restricting our attention to lottery
pricings with only one lottery. The following simple argument shows that the bound
improves from a factor of 4 to a factor of just 2.

For a lottery pricing of the given form, consider offering an agent either just the
item pricings it contains, or just the single lottery it contains. Note that reducing
the options in a lottery system only causes an agent to change their behavior if we
remove their favorite option; thus, the combined revenue from offering these parts
is at least the revenue of the original lottery pricing. Furthermore, an agent buying
a lottery must value at least one of the items it randomizes over at the price of the
lottery or higher. This implies that the revenue from offering a single lottery in
isolation is no more than the revenue from offering each item in its support at the
same price as the lottery. Since this gives two item pricings with combined revenue
at least that of the original lottery pricing, one of the item pricings must give at least
half of this amount.

5.2 Multi-agent settings

We will now prove the main result of the chapter, namely that the increase in a
seller’s revenue from using randomization in a multi-agent multi-parameter setting
can be bounded by a small constant factor. We will extend the approach outlined
in Section 5.1 for the special case of a single buyer: we bound the revenue of any
BIC, IR randomized mechanism for an instance I of the BMUMD by those of three



www.manaraa.com

79

truthful deterministic mechanisms for the corresponding single-parameter instance
with representatives, Ireps.

Given a BIC, IR randomized mechanismM for I, we first study the properties of
the mechanism AM for Ireps that has the same allocation rule as M (Section 5.2.1).
Then, in an argument similar to the one in Section 5.1, we show that the revenue of
M can be bounded by the revenue of AM plus the revenues of two VCG-style mech-
anisms for Ireps (Section 5.2.2). This argument requires us to use some properties of
matroid set systems that we describe in Section 2.1.2.

5.2.1 A mechanism for Ireps

Consider an instance I = (I× J, S, F) of the BMUMD. Given a randomized BIC,
IR mechanismM for I, we define a mechanism AM for the instance Ireps that also
satisfies BIC and IR. As in the single-agent case, our goal is to relate the revenue of
M to the revenue of the mechanism AM implementing the same allocation rule in
Ireps. To this end, we also need to ensure AM makes no positive transfers to the reps
in Ireps. LetM(v) and π(v) denote the allocation and payment rules, respectively, of
the mechanismM. In an effort to unify our notation and theorem statements with
Section 5.1, we define the quantities

qij(vi) = E
v−i

[Mij(v−i, vi)]; and

pi(vi) = E
v−i

[πi(v−i, vi)].

We are now ready to define the mechanism AM. For a given valuation vector v,
AM will simulate the original mechanismM on v. It makes an allocation ofMij(v)
to rep (i, j), and charges a price of

pi(vi) −
∑
k6=j

qik(vi)vik + uij(vi,−j).

Note that this payment rule is similar to the one defined for mechanism ÃL in
Section 5.1 except for the additive term uij(vi,−j). The terms uij(vi,−j) are normal-
ization factors that ensure that AM never makes positive transfers to the agents.
In the proof of Lemma 5.5 below we describe how to set these terms so that the
resulting mechanism is BIC, IR, and makes no positive transfers. For the sake of
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continuity we defer the proof of this lemma to the end of this subsection.

Lemma 5.5. If M satisfies BIC and IR, then for appropriately defined uij(vi,−j)’s AM

satisfies BIC and IR, and makes no positive transfers.

Following Section 5.1 as a guide, we would now like to upper bound the revenue
ofM point-wise, i.e. at every value vector v, by the revenue of AM at v and a few
other terms. Note, however, that we defined the payments of AM not in terms of
the paymentsM actually charges, but in terms of their expectations (with respect to
v−i). Thus, in order to achieve the sort of point-wise guarantee we want, we need to
change how we account for the revenue ofM. Specifically, we define the quantities

R̄Mi (vi) = E
v−i

[RMi (v−i, vi)]; and R̄M(v) =
∑
i∈I

R̄Mi (vi).

Note that Ev[R
M(v)] = Ev[R̄

M(v)], and so it suffices to get a point-wise bound for
R̄M(v). Furthermore, R̄M(v) is a more natural candidate for a point-wise bound,
since R̄Mi (vi) = pi(vi).

While the mechanism AM collects revenue from a total ofmn reps, the proof of
our bound only relies on the revenue extracted from a small subset of them. We
denote this subset by a(v). We choose a function a(v) with the property that it
includes at most one rep (i, j) for any given i. Formally, a unit-demand function a(·)
is a function mapping valuation vectors to sets of reps that respect the unit-demand
constraint, i.e. for any valuation vector v and i ∈ I, |a(v) ∩ Ji| 6 1.

The following generalization of Lemma 5.2 is our main characterization of AM.

Lemma 5.6. For any unit-demand function a(·) and any valuation vector v, we have

R̄M(v) 6
∑

(i,j)∈a(v)

RAM

ij (v) +
∑

(i,j)/∈a(v)

qij(vi)vij

6 RAM(v) +
∑

(i,j)/∈a(v)

qij(vi)vij.

Proof. We bound the contribution of each agent to the revenue term R̄M(v) indepen-
dently. Fix some agent i, and let qi(vi) and pi(vi) denote the expected allocation
and payment for agent i under mechanism M (where the expectation is over the



www.manaraa.com

81

other agents’ values v−i). Recalling the definition of AM, we can see that

R̄Mi (vi) = pi(vi) =

(
pi(vi) −

∑
k6=j

qik(vi)vik

)
+
∑
k6=j

qik(vi)vik

6 RAM

ij (v) +
∑
k6=j

qik(vi)vik,
(5.1)

for any j, where RAM

ij (v) is the revenue of mechanism AM from the rep (i, j). The
inequality follows from the fact that the normalization terms uij(vi,−j) we chose are
always nonnegative. Note that for bounding the portion of R̄M(v) corresponding
to agent i, we have used the portion of RAM obtained from just a single rep (i, j).
In particular, for a given agent i, we use the revenue obtained from rep (i, j) ∈
a(v) when bounding R̄Mi (vi). Not every agent is guaranteed to have a rep in a(v),
however; for such an agent i, we instead use a formulation of the IR constraint for i
underM: pi(vi) 6

∑
k qik(vi)vik. Adding the inequality (5.1) or the IR constraint

(as appropriate) over all i, we get that for any unit-demand function a(·),

R̄M(v) 6
∑

(i,j)∈a(v)

RAM

ij (v) +
∑

(i,j)/∈a(v)

qij(vi)vij

6 RAM(v) +
∑

(i,j)/∈a(v)

qij(vi)vij,

since we chose normalization terms uij(vi,−j) in the payments of AM so that the
mechanism never made positive transfers to agents. This is precisely our claimed
bound.

We now present the proof of Lemma 5.5.

Proof of Lemma 5.5. We first prove that AM is BIC. Consider a rep (i, j) with value
vij. Our key observation is that the expected utility that the rep gets in AM from
reporting a value v ′ij can be related to the expected utility that the corresponding
agent i gets in M from reporting a value vector (v ′ij, vi,−j). In particular, we can
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write Rep (i, j)’s expected utility from reporting v ′ij in AM as

E
v−ij

[
Mij(v−ij, v ′ij)vij −

(
pi(vi,−j, v ′ij) −

∑
k6=j
qik(vi,−j, v ′ij)vik + uij(vi,−j)

)]
= E

vi,−j
[
∑
k∈Jqik(vi,−j, v

′
ij)vik − pi(vi,−j, v ′ij)︸ ︷︷ ︸

Agent i’s expected utility from reporting (vi,−j,v ′ij) inM

] − E
v−ij

[uij(vi,−j)]

Note that the first term inside the expectation above is the utility that agent i receives
inM from reporting (vi,−j, v ′ij); SinceM is BIC, for every vi,−j this term is maximized
when agent i reports (vi,−j, vij). The second term, on the other hand, is independent
of vij. So the entire expression is maximized with v ′ij = vij, and AM is BIC.

We now proceed to show that AM satisfies IR, that is, all reps get nonnegative
expected utility. First, consider omitting the uij(vi,−j) terms from the payments in
AM. Then the equation above implies that rep (i, j) gets expected utility from AM

that is exactly equal to the expected utility that agent i gets fromM given vi. Thus,
if the uij(vi,−j) terms were all zero, then AM would satisfy IR becauseM satisfies
IR. Note, however, that the uij(vi,−j) terms cannot all be zero—an agent imay value
some item j at vij = 0, yet receive positive utility underM via the allocation of some
other item; the only way for AM to match the utility of rep (i, j) to that of agent i is
by making a positive transfer. To cancel this positive transfer, we choose

uij(vi,−j) =
∑
k6=j

qik(vi,−j, 0)vik − pi(vi,−j, 0),

For a rep with value vij = 0 this makes the payment as well as utility of the rep equal
to 0. To complete the proof we claim that (1) the rep gets positive expected utility at
all vij, implying interim IR, and, (2) the rep makes nonnegative payments at all value
vectors v, implying no positive transfers. The first claim follows by noting that the
mechanism is BIC and therefore the expected utility of any rep is a nondecreasing
function of his value.

For the second claim, we use the fact that M is BIC to note that for any rep
(i, j) and values vi,−j, the utility of the rep in expectation over v−i is maximized
when the rep reports his value truthfully. This is slightly stronger than the BIC
condition proved above because it holds for all vi,−j and not just in expectation over
those values. This implies that the payment made by rep (i, j) in expectation over
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v−i is a nondecreasing function of his value vij. However, observe that rep (i, j)’s
payment is independent of v−i. Therefore, the ex post payment function is in fact a
nondecreasing function of vij. Now, using the fact that payments are zero at vij = 0,
we conclude that payments are always nonnegative.

5.2.2 Main theorem

As noted earlier, the motivation for this setting arises in the context of multi-unit
multi-item auctions. Consider, in particular, a seller withm different items and kj
copies of item j for all j. Each of the n unit-demand buyers have independently
distributed values for each item. The seller’s constraint is to allocate item j to no
more than kj agents, and to allocate at most one item to each agent. Note that
the unit-demand constraint and the item supply constraints are each instances of
partition matroids. Thus the system S in this setting is an intersection of two partition
matroids.

More generally, in this section we consider set systems S that are intersections of
the partition matroid corresponding to the unit-demand constraint over agents (call
it U) and an arbitrary other matroid over I× J (call it M).

As in the single-agent case, we want to bound the revenue of a randomized
mechanism M for I by the revenues of AM and a suitably defined Vickrey-style
auction. We can apply Lemma 5.6 to each value vector to bound the revenue. If
we want to achieve an analog of Theorem 5.4 for our current setting, however, we
need to relate the second term in the bound Lemma 5.6 provides to the revenue
of a feasible mechanism for Ireps. As in the single-agent case, we may bound the
second term by the value of the second best item for each agent. However, this
may be far larger than the value of any feasible allocation. For instance, if the seller
has a single copy of some item j and j is every agent’s highest-valued item, then
we cannot give every agent their highest-valued item without violating the supply
constraint. Instead, we will use the fact that the qij’s arise from distributions over
feasible allocations, and the corresponding second term can therefore be bounded
by revenue obtained from feasible allocations. We now present the details.

Lemma 5.7. Let I be an instance of the BMUMD. The revenue from any BIC, IR randomized
mechanismM for I is at most five times the expected revenue of the optimal mechanism for
Ireps.
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Proof. Consider any mechanismM for I and recall the characterization of the corre-
sponding mechanism AM from Lemma 5.6:

R̄M(v) 6 RAM(v) +
∑

(i,j)/∈a(v)

qij(vi)vij, (5.2)

where a(·) is any unit-demand function.
Recall that in the single-agent setting, we bound the second term in this charac-

terization by the second highest value in v. This essentially corresponds to taking
a(v) = argmaxi vi. Likewise, here we will pick a(v) to be the maximum value
feasible set of reps; note that this is a unit-demand function. Let A1(v) denote this
set (we drop the argument v wherever it is obvious). Summing Equation (5.2) over
all value vectors we get

R̄M(v) 6 RAM(v) +
∑

(i,j)/∈A1(v)

qij(vi)vij︸ ︷︷ ︸
T

. (5.3)

Our goal in the rest of the proof becomes to bound the second term above, labeled
T . Informally, as in Section 5.1, we bound T by the second best feasible set. To this
end, we define the set A2 as the maximum valued feasible set over the remaining
(I× J) \A1 reps:

A2(v) = argmax
S∈S;S∩A1(v)=∅

v(S).

Note that our definition of qij(vi) here does not exactly match up with the corre-
sponding definition in Section 5.1. In that setting, the qi values represented overall
expected allocations; here, they represent the allocation agent i expects to receive
knowing his or her own value, but not other agents’ values. In particular, if an agent
knows they have a relatively high value for a service with only small supply, it is
reasonable for them to expect to receive it; but if every agent happens to value that
service highly for a particular v, most of the agents will necessarily be disappointed
in any feasible allocation. The point is that for a particular value vector, the sum T

might give a value much larger than any feasible set, so we cannot hope to get a
point-wise bound. We know, however, that qi(vi) is defined in terms of a feasible
allocation, and so we can relate it to the values in A2 in expectation. We formalize
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this in the following claim.

Claim 5.8. The sum of values of all reps in A2 is no less than T in expectation:

E
v

[ ∑
(i,j)∈A2(v)

vij

]
> E

v

[ ∑
(i,j)/∈A1(v)

qij(vi)vij
]
.

Proof. This follows simply by computing

E
v

[ ∑
(i,j)/∈A1(v)

qij(vi)vij
]
= E

v

[ ∑
(i,j)/∈A1(v)

Mij(v)vij
]
6 E

v

[ ∑
(i,j)∈A2(v)

vij

]
;

the final inequality is a result of the fact thatM always allocates a feasible set, and
that A2 has the largest value among all feasible sets in the complement of A1.

Next, we want to claim that a VCG-style mechanism can extract the value of the
set A2. At a high level, we can do so by constructing a mechanism that serves reps
in A1 and charges them prices that are at least as large as the values of the reps they
displace in A2. We need to ensure that each rep in A2 becomes a price setter for at
least one rep in A1. If we faced either of the constraints U or M alone, we could
simply run a VCG mechanism and know that each displaced rep in A2 would set
the price for some rep in A1. When we consider the intersection U ∩M, however, it
might be the case that a rep in A2 is displaced by two different reps from A1, each
with respect to a different constraint, and so fails to set a price for either one (since
neither can be assigned sole responsibility for the displacement). Our approach is to
design two VCG-style mechanismsM1 andM2, which focus on extracting revenue
related to displacements arising from the constraints U and M respectively.

To formalize this, we use Proposition 2.1 to construct two maps from A2 to A1,
one for each of the matroid constraints:

g1 : A2 → A1 s.t. ∀e ∈ A2 : g1(e) is undefined and A1 ∪ {e} ∈ U, or

g1(e) is defined and A1 \ {g1(e)} ∪ {e} ∈ U; and

g2 : A2 → A1 s.t. ∀e ∈ A2 : g2(e) is undefined and A1 ∪ {e} ∈M, or

g2(e) is defined and A1 \ {g2(e)} ∪ {e} ∈M.

It follows that for any (i, j) inA2, the setA1 ∪ {(i, j)} \ {g1(i, j),g2(i, j)} is a feasible
set. Furthermore, by the optimality of A1, we have vij 6 vg1(i,j) + vg2(i,j). The
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maximality of A1 implies that every element of A2 has an image under either g1 or
g2 or both.

We are now ready to define the mechanisms M1 and M2 by specifying their
allocation rules. Given a valuation vector v, the mechanismM1 serves only those
reps (i, j) that belong to A1 and for which vij > vg−1

1 (i,j)/2 (if g−1
1 is defined at

that point). Likewise, mechanism M2 serves only those reps (i, j) ∈ A1 that have
vij > vg−1

2 (i,j)/2 (again, if it is defined). We note that M1 and M2 have monotone
allocation rules, and are therefore IC. Truthful payments satisfying IR can be defined
appropriately. Note that by our choice of allocation rule, whenever mechanism
M1 or mechanismM2 serves rep (i, j), it charges a payment of at least vg−1

1 (i,j)/2 or
vg−1

2 (i,j)/2, respectively. Since both M1 and M2 serve subsets of A1, they are both
feasible under S as well.

The following claim lower bounds the combined revenue ofM1 andM2.

Claim 5.9. Twice the combined revenue of mechanismsM1 andM1 is no less than the sum
of values of all reps in A2 in expectation, i.e.,

2
(
RM1 + RM2

)
> E

v

[ ∑
(i,j)∈A2

vij

]
.

Proof. Consider any rep (i, j) ∈ A2, and the reps g1(i, j) and g2(i, j) ∈ A1 (if defined).
Note that A ′1 = A1 ∪ (i, j) \ {g1(i, j),g2(i, j)} is feasible. Suppose both vg1(i,j) and
vg2(i,j) are less than vij/2; then the setA ′1 is a feasible set and v(A ′1) > v(A1) which is
a contradiction to the optimality of A1. Thus one of vg1(i,j) or vg2(i,j) must be at least
vij/2 and soM1 orM2 charges that rep this amount, respectively. So we get that

2
(
RM1(v) + RM2(v)

)
>
∑

(i,j)∈A2

vij,

for any v; taking expectation over v yields the claim.

From equation (5.3) we can see that

RM = E
v
[R̄M(v)] 6 RAM + E

v

[ ∑
(i,j)/∈A1(v)

qij(vi)vij
]
;

combining the above with Claims 5.8 and 5.9 completes the proof of Lemma 5.7.
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Combining the lemma with Theorems 4.9 and 4.5 we obtain the following theo-
rem.

Theorem 5.10. Given an instance I of the BMUMD with unit-demand agents and a matroid
feasibility constraint, there exists a deterministic mechanism for I that obtains in PDSE at
least a 1/40 fraction of the revenue of the optimal BIC, IR randomized mechanism for I. In
the special case of multi-unit multi-item auctions, the revenue of any BIC, IR randomized
mechanism is at most 33.75 times the revenue of the optimal deterministic mechanism for I.

5.3 Common base value correlation

In the previous sections we considered settings where buyers have independent
values for the different services offered. We now consider a more general model for
agent types. Since the agents are unit-demand, we can think of the services being
offered as perfect substitutes. A natural form of correlation, then, is for the agent to
have some “base” value for being served (regardless of which service is received),
plus an additive deviation specific to the particular service received.

Formally, in the common base value setting, agents’ types consist of (m+ 1) inde-
pendently distributed values {t0, t1, . . . , tm}, with t0 being the base value for getting
served and ti being the additional benefit of obtaining service i; the agent’s value
for service i becomes vi = ti + t0. Henceforth, we use the abbreviation CBV to refer
to the version of BMUMD with this type of common base value correlation.

5.3.1 Warm up: single-agent setting

Once again we introduce our techniques through the single-agent setting. At a high
level, our approach is to “reduce” the CBV setting to BMUMD with independent
values. In particular, given an instance I of the former, we construct an instance Î of
the latter such that a lottery pricing for the former can be converted into one for the
latter without much loss in revenue, and conversely an item pricing for the latter
can be converted into one for the former. Then we can just apply Lemma 5.7 to Î to
obtain a bound on the benefit of randomness for I. The transformation from I to Î is
straightforward except that Î does not satisfy the unit-demand constraint, and we
need to modify the proof of Lemma 5.7 appropriately. We now present the details.
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Theorem 5.11. Given an instance I of the CBV, there exists an item pricing p such that the
revenue of any lottery menu L for I satisfies RL 6 8Rp.

Proof. We begin by proving a bound with a weaker multiplicative factor of 9 and
then show how to improve it to a factor of 8. We first define an uncorrelated instance
Î of the BMUMD. Î is a single-agent setting with (m + 1) items; we interpret the
tuple {t0, . . . , tm} making up an agent’s type in I as being the values of the agent
in setting Î for the (m + 1) items. In keeping with I, the feasibility constraint we
associate with Î is that we may sell item 0, and at most one additional item from
among items 1, . . . ,m. Note that the agent in Î is not a unit-demand agent.

We first show how to convert a lottery menu L for I into a lottery menu L̂ for Î
with no loss in revenue. For a lottery ` = (q1, . . . ,qm,p) inL, we define q0 =

∑m
i=1 qi,

and add the lottery ̂̀= (q0, . . . ,qm,p) to L̂. Note that ̂̀does not necessarily satisfy
the requirement that the qi’s sum to at most one; it does, however, satisfy the
feasibility constraint indicated for Î. Furthermore, fixing a type t0, . . . , tm, the utility
an agent in I receives from a lottery ` ∈ L is

m∑
i=1

qivi − p =

m∑
i=1

qi(ti + t0) − p =

m∑
i=0

qiti − p,

which is precisely the utility a corresponding agent in Î would receive from the
corresponding ̂̀∈ L̂. We thus have RL = RL̂.

Next we will prove an analog of Theorem 5.4 for Î. Note that we cannot apply that
theorem directly because the instance does not satisfy the unit-demand constraint.

Consider the setting Îreps obtained by replacing the multi-parameter agent in Î

bym+ 1 single-parameter reps. Let M̂ be the optimal mechanism for this instance.
Likewise, let V̂ be the Vickrey auction and AL̂ be the mechanism with the same
allocation rule as L̂ for the instance Îreps. Then, by following the proof of Lemma 5.2,
due to the less restrictive feasibility constraint (

∑m
i=0 qi 6 2) we get

RL̂ 6 RAL̂

+ 2RV̂ 6 3RM̂ .

To complete the argument, we need to relate the revenue of the mechanism
M̂ for Îreps to that of a deterministic pricing for I. To this end, a key observation
is that our feasibility constraint for Îreps (carried over from Î) implies that M̂ may
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make decisions about allocations and prices for rep 0 separately from those for
reps 1, . . . ,m; as such, M̂ effectively consists of two mechanisms, one serving rep 0
and another serving reps 1, . . . ,m, both under a unit-demand constraint. Now, the
optimal mechanism for serving rep 0 is a pricing with a single price; applying this
price to all of the items in I gives us a pricing with revenue at least as large as that
of the optimal mechanism to serve rep 0. For the optimal mechanism serving reps
1, . . . ,m, Theorem 3.5 implies that there exists a pricing in Î that obtains half the
revenue of the mechanism; we apply the same pricing to I and note that the agent
continues to select the same item under this pricing. Therefore, we can see that

RM̂
0 6 Rp and RM̂

−0 6 2Rp,

where p is the optimal pricing for I, RM̂
0 is the revenue of M̂ from rep 0 in Îreps, and

RM̂
−0 is the revenue of M̂ from the other reps in Îreps. Putting everything together,

we get
RL 6 3RM̂ = 3(RM̂

0 + RM̂
−0) 6 3(Rp + 2Rp) 6 9Rp.

In order to improve the factor from 9 to 8, we employ better bounds on the
contribution of t0 and the contribution of other values to the revenue of a mechanism
for Îreps, depending on the type vector at which they are evaluated. Denote these
quantities as RM0 (t) and RM−0(t), respectively, for a mechanism M at a particular
valuation vector t. As previously noted, the optimal mechanism M in Îreps treats rep
0 independently from reps 1, . . . ,m; thus, we have that any mechanism M in this
setting must satisfy both RM0 6 RM̂

0 and RM−0 6 RM̂
−0.

Since we know that
∑m
i=1 qi 6 1, when t0 is the maximum among all the ti,

Lemma 5.6 implies that

RL(t) = RL̂(t) 6 RAL̂

0 (t) + RV̂
0 (t);

on the other hand, when one of t1, . . . , tm takes on the maximum value, we end up
with, for some i,

RL(t) = RL̂(t) 6 RAL̂

i (t) + 2RV̂
i (t).

Combining these two gives us a point-wise guarantee of

RL(t) 6 RAL̂

0 (t) + RV̂
0 (t) + RAL̂

−0 (t) + 2RV̂
−0(t).
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Therefore, if we let p be the optimal pricing for I, we get

RL 6 RAL̂

0 + RV̂
0 + RAL̂

−0 + 2RV̂
−0 6 2RM̂

0 + 3RM̂
−0 6 2Rp + 6Rp,

implying the claimed bound of 8.

5.3.2 Multi-agent settings

We now consider the common base value model for multi-agent settings. As with
the single-agent case, given an instance I = (I× J, S, F) of our problem, we construct
a related setting Î with independent values in such a way that any randomized
mechanismM for I corresponds naturally to a randomized mechanism M̂ for Î that
achieves the same expected revenue. Our argument has three main steps:

1. We define the related setting Î and mechanism M̂.

2. We extend Lemma 5.7 to bound the revenue of the optimal mechanism for I
in terms of the optimal mechanism for Îreps.

3. We apply results from Chapters 3 and 4 to obtain good deterministic mecha-
nisms for I that approximate the revenue of the optimal mechanism for Îreps.

Step 1: Defining the setting Î and mechanism M̂

The main idea behind our construction of the modified instance Î remains unchanged
from the single-agent case, namely, to create a new service that explicitly captures
agents’ base values for being served. We assign this extra service index 0, and
map an agent i with values (ti0 + ti1, . . . , ti0 + tim) in I to an agent with values
(ti0, ti1, . . . , tim) in Î. We construct the mechanism M̂ from M by extending the
allocation rule so that wheneverM allocates service j to agent i, M̂ allocates both
service j and service 0 to agent i. We use the payment rule ofMwithout any changes
for M̂. It is easy to see that M̂ is BIC and IR.

All that remains is to define the feasibility constraint Ŝ for the setting Î. In
single-agent CBV settings, we used the constraint “service 0 plus at most one other
service.” In multi-agent CBV settings, we generalize this to “the projection of any
feasible allocation for I onto service 0, plus any feasible allocation for I.” To make
this formal, write the feasibility constraint for I as S = U ∩M, where U represents
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the unit-demand constraint and M is the matroid associated with the instance I.
Define constraint S0 on the reps for service 0 as

S0 = {S ⊆ I× {0} : ∃S ′ ∈M such that (i, 0) ∈ S⇔ (i, j) ∈ S ′ for some j} .

Our overall feasibility constraint for the instance Î is then the direct product Ŝ =

S0 × S.The proposed feasibility constraint has several nice properties:

A. Ŝ is compatible with the modified mechanism M̂;

B. Ŝ is “close” to a unit-demand constraint (in particular, S0 and S are both unit-
demand, and so every agent in Î is allocated at most two services); and

C. Ŝ ensures that feasible allocations of service 0 and of services 1, . . . ,m are both
related to feasible allocations in S, but, importantly, allows decisions about
these two to be made independently.

The second property above is what allows us to extend Lemma 5.7 to our current
setting, and we discuss it further in the next subsection. The third property is critical
to allowing us to find mechanisms for the original setting I that approximate the
revenue of the optimal mechanism for Îreps; it means that a mechanism for Ŝ can be
“split” into two mechanisms, one for service 0 and one for services 1, . . . ,m, which
respect S (or a projection of it).

Step 2: Bounding the optimal revenue for I via the optimal revenue for Îreps

We now prove the following analogue to Lemma 5.7 for CBV instances. As in the
proof of Theorem 5.11, we will use the fact that while the setting Î is not unit-demand,
it is “close” to unit-demand in that every feasible allocation can be covered by at
most two unit-demand feasible allocations.

Lemma 5.12. Consider an instance I of the CBV. The revenue from any BIC, IR mechanism
M for I is at most nine times the expected revenue of the optimal mechanism for the instance
Îreps.

Proof. We follow the same framework as in the proof of Lemma 5.7; in fact, much
of the proof goes through exactly as written there, and we refer the reader to that
proof in such instances.
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In order to be able to leverage Lemma 5.6 in our proof, we need a unit-demand
restriction of the feasibility constraint Ŝ. We define ŜU = U ∩ (S0 ×M) for this
purpose. Note that ŜU ⊆ Ŝ, and further, for any S ∈ Ŝ there exist two sets S1,S2 ∈ ŜU

such that S ⊆ S1 ∪ S2.
We begin by considering the instance Î = (I× {0} ∪ J, Ŝ, F) and define, as before,

a “best” set A1 and a “second best” set A2, and two VCG-style mechanisms M1

and M2. In this case, however, we define them with respect to the unit-demand
feasibility constraint ŜU rather than the true feasibility constraint Ŝ. We set

A1(v) = argmax
S∈ŜU

v(S) and A2(v) = argmax
S∈ŜU;S∩A1(v)=∅

v(S),

respectively. Given a mechanismM for I, we can apply Lemma 5.6 to the mechanism
M̂ for Î as defined above and take an expectation over v to get

RM = RM̂ 6 RAM̂ + E
v

[ ∑
(i,j)/∈A1(v)

qij(vi)vij
]
.

Recall that M̂ always allocates a set in Ŝ, and that every such set can be covered by
two sets in ŜU. So, for any v, we have∑

(i,j)/∈A1(v)

M̂ij(v)vij 6 2
∑

(i,j)∈A2(v)

vij.

Then, we can apply the rest of the proof of Lemma 5.7 unchanged (in particular,
Claim 5.9) with respect to the feasibility constraint ŜU to get that

RM 6 RAM̂ + 2 E
v

[ ∑
(i,j)∈A2(v)

vij

]
6 RAM̂ + 4(RM1 + RM2).

Since ŜU ⊆ Ŝ, all three of these mechanisms are feasible for the instance Îreps, and
the result follows.

Step 3: Bounding the optimal revenue for Îreps

We now show that the revenue obtained by the optimal mechanism for Îreps is no
more than a constant factor larger than that obtained by a deterministic mechanism
for I. Note that as in the single-agent case, the optimal mechanism for Îreps treats
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service 0 independently from services 1, . . . ,m, and so we may bound the revenue
from each of these separately. In the single-agent setting, it is straightforward to
apply the techniques of Chapter 4 to get approximately optimal pricings for the
original setting I. In the multi-agent setting, however, agents can affect each other’s
outcomes in nontrivial ways, and our approximation arguments necessarily become
more complex. Dealing with these issues for service 0 and for services 1, . . . ,m is
substantially different, and so we address these cases separately.

Step 3a: Revenue from the base value

Consider a mechanismM for allocating service 0 for the instance Îreps, that is, when
the feasibility constraint is given by S0 alone. We can extend this mechanism to one
for I as follows. For every agent that gets served at a certain price in M, we offer
the agent any of the services 1 through m at the same price. Then, there is some
feasible allocation to the agents of services that obtains the same expected revenue
as the mechanismM for Îreps. Of course, the multi-parameter agents in I may not
choose to buy the services prescribed by this feasible allocation—each agent would
instead buy the service with the most value. While an agent changing which service
they buy has no effect on the revenue we receive from that agent, the choices of one
agent affect what offers we can make to another, and hence when an agent changes
what service they buy it can have a significant impact on total revenue. In order to
show that we do not lose too much revenue in this manner, we need to leverage the
fact that the approximations of Chapter 4 were via posted-price mechanisms.

We note that the feasibility constraint S0 is a matroid.2 Therefore, we can employ
the following theorem of Yan (2011), which improves upon the corresponding
theorem in Chapter 4.

Theorem 5.13 (Yan 2011, Theorem 3.1 and Lemma 4.1). Given an instance of the BSMD
with a matroid feasibility constraint, there exists a PPM with expected revenue at least a
(1 − 1/e) fraction of that of the optimal mechanism for the instance.

We are now ready to bound the optimal revenue from service 0 for Îreps.

2Precisely, S0 can be seen to be a transversal matroid via a bipartite graph with I× {0} on one
side and I× J on the other, and an edge between (i, 0) and (i, j) for every i and j.
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Lemma 5.14. Given an instance I of the CBV, there exists a truthful deterministic mechanism
for I whose revenue is at least a 1/2(1 − 1/e) fraction of the revenue that an optimal
mechanism for Îreps extracts from reps for service 0.

Proof. Consider the instance Îreps with just the constraint S0. We first apply The-
orem 5.13 to obtain an SPM P for this setting yielding a (1 − 1/e) fraction of the
optimal expected revenue. We now construct a mechanism for I as follows. Consider
agents in decreasing order of the prices at which P offers service 0 to them in Îreps.
To each agent, offer any services that can be feasibly allocated at a uniform price
equal to that in P, and allocate the service (if any) chosen by the agent.

Let us bound the revenue of this mechanism. Note that the revenue of P is no
more than the sum of prices corresponding to a maximum-total-price independent
set in S0, or equivalently, a maximum-total-price independent set in S. On the other
hand, the constructed mechanism for I can be thought of as a greedy algorithm
for S, a matroid intersection constraint, that breaks ties in some arbitrary manner
(namely according to agents’ utilities). Proposition 2.2 then implies that this greedy
algorithm obtains at least half of the revenue of the best independent set in S. We
therefore obtain the lemma.

Step 3b: Revenue from the service-specific values

Finally, we bound the revenue that the optimal mechanism for Îreps extracts from
reps for services 1, . . . ,m. At a high level, our approach is similar to that followed
in the previous subsection to bound the revenue from reps for service 0. We again
invoke a theorem of Chapter 4 to get an SPM for Î, and then analyze its performance
when run in I in the natural way – offering services to agents in the same order and
for the same prices.

Relating the outcome and revenue of an SPM applied to I and Î presents two
challenges: (1) agents in I may make different decisions from those in Î; (2) the offers
made to any single agent are potentially interleaved by offers to other agents. The
latter complicates an agent’s decision to either accept the current offer, or wait for a
future offer that brings in more utility but may get preempted by a sale to another
agent. To deal with these challenges, we leverage a stronger version of the revenue
guarantees that SPMs provide for instances of the BMUMD that is implicit in the
proof techniques of Chapter 4. Let us define the favorite service of an agent to be
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the one that brings him the most utility, j∗(i) = argmaxj(vij − pij) for an agent i.3

Note that when an agent is offered his favorite service, it is a dominant strategy
for the agent to accept this service. In particular, the agent need not strategize
about what offers he may receive in the future. The SPMs designed in Chapter 4 get
large expected revenue from agents who are only interested in buying their favorite
service at the announced prices because the other services bring them negative
utility. Focusing on this set of agents makes it easier for us to relate the agents’
behavior in I and Î; in particular, each agent’s favorite (utillity maximizing) service
is the same in both settings.

The following stronger version of Theorem 4.9 is implicit from the proof given
in Chapter 4.

Theorem 5.15. Given an instance Î of the BMUMD with unit-demand agents and a matroid
feasibility constraint, there exists a PPM P for Î, such that the expected revenue that it obtains
in PDSE from agents that derive positive utility from only one service (by definition, their
favorite one) at the given prices, is at least a 1/8 fraction of the revenue of any truthful
mechanism for the instance Îreps.

We use the above theorem to approximate the revenue that the optimal mecha-
nism for Îreps extracts from reps for services 1, . . . ,m.

Lemma 5.16. Given an instance I of the CBV, there exists a deterministic mechanism for I
achieving revenue in PDSE that is at least one sixteenth of that which the optimal mechanism
for Îreps extracts from reps for services 1, . . . ,m.

Proof. Consider the instance Îreps with just the services 1 through m and the con-
straint S. Applying Theorem 5.15 to the optimal mechanism for this instance, we get
a SPM P whose expected revenue over Î from agents that only desire their favorite
service is at least an eighth of the expected revenue that the optimal mechanism for
Îreps extracts from reps for services 1, . . . ,m. We apply the mechanism P to setting I

in the natural way: we offer services to agents in the same order and at the same
prices as the ones used by P for the setting Î.

We will now relate the revenue of P from I to the revenue it obtains in Î from
agents that desire only their favorite service. Fix a type vector t. Consider an agent

3If there are multiple utility-maximizing services, we break ties in favor of the one with the
lowest price, i.e., in favor of the one occuring latest in the ordering of offers.
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i that in mechanism P in the setting Î desires only his favorite service j∗(i) at the
given prices. Recall that j∗(i) is still the agent’s favorite service in the mechanism P

applied to setting I. So, whenever the agent is offered j∗(i), it is a dominant strategy
for the agent to accept the service.

Formally, let F(t) denote the set of (agent, service) pairs (i, j) where j is i’s favorite
service and the only service that the agent desires in the setting Î. Let A(t) denote
the set of (agent, service) pairs (i, j) where i accepts (purchases) j in the setting I.
For any pair (i, j) that belongs to F(t) but not to A(t) it must be the case that P does
not offer service j to i in I because it is blocked by a previous sale, i.e., it cannot be
allocated feasibly. Accordingly, let B(t) denote the set of (agent, service) pairs (i, j)
that are “blocked” in I. Then we have F(t) ⊆ A(t) ∪ B(t).

Now we will focus on the set A(t) ∪ B(t). Note that P’s run on this set of (agent,
service) pairs is essentially a greedy algorithm in which any pair that is not blocked is
purchased. In particular, any pair that is not inA(t)∪B(t) is offered but not accepted,
and so does not effect P’s run over this set of pairs. Since S is a matroid intersection
constraint, we can apply Proposition 2.2 to conclude that the total revenue obtained
by this run of the mechanism P in I, namely the sum of the prices corresponding to
the pairs in A(t), is at least half of the total price in any feasible subset of A(t)∪B(t).

On the other hand, by the definition of F(t), the expected revenue of P in Î from
agents that only desire their favorite service is equal to the total price in F(t). Since
F(t) is a feasible subset of A(t)∪ B(t), we may conclude that the revenue of P from I

when the type vector is t is at least half of the revenue that P gets in Î from agents
desiring only their favorite service when the type vector is t.

Taking expectations over t and applying Theorem 5.15 we get the lemma.

Final approximation

We now combine the lemmas from each of the above subsections to get the main
theorem of this section.

Theorem 5.17. The revenue obtained by any BIC, IR randomized mechanism for an instance
I of the CBV is at most (162 + 18/(e − 1)) ≈ 172.5 times the revenue of the optimal IR
deterministic mechanism for I implemented in partial dominant strategies.

Proof. Consider any BIC, IR mechanism M for I. We apply Lemma 5.12 to M
to get that RMI 6 9RM

Îreps where M is the optimal mechanism for the setting Îreps.
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Now, applying Lemmas 5.14 and 5.16 give us deterministic mechanisms for I that
guarantee a (e−1)/2e fraction and a 1/16 fraction of the revenue thatM extracts from
reps for service 0 and services 1, . . . ,m, respectively, in Îreps. Thus, the better of these
mechanisms guarantees revenue of at least RM

Îreps/(16 + 2e/(e − 1)) > RMI /(162 +

18/(e− 1)).

5.4 A gap example

We showed in Sections 5.1 and 5.2 that the revenue of the optimal mechanism for
Ireps gives an upper bound within constant factors to the revenue of an optimal
randomized mechanism for I. A natural question is whether it is possible to tighten
our analysis to reduce the factor to 1, i.e., whether the optimal revenue for Ireps is a
true upper bound on the revenue of an optimal randomized mechanism for I. In
this section we give a simple example where the revenue of a lottery pricing for a
single-agent BMUMD instance I is strictly larger than the optimal revenue for the
instance Ireps; we then describe a generalization of this example where the former
exceeds the latter by a factor of 1.13, the largest gap we know of.

The first instance we consider is defined as follows. There is a single agent
with i.i.d. valuations for two items, each of which is drawn according to a discrete
distribution with three point masses. Specifically, for i = 1, 2 we have that the
valuation for item i is distributed as

vi ∼


1 with probability1/2;

2 with probability1/2 − 1/H; and

H with probability1/H,

where H > 2 is a parameter to be fixed later.
Before we describe the optimal pricing and lottery, let us note some properties of

this instance. Agents who value both items highly are so rare that their contribution
to revenue will be negligible. Thus, we are concerned with extracting revenue from
two groups of agents: those who place a low value on both items, and those who
place a high value on exactly one item. Ideally, we would like to offer a low price
to the former and a high price to the latter, but item pricings do not give us the
ability to target agents in this way. In the setting with reps, we expect that increased
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competition leads to increased revenue. However, the rarity of the event that both
reps have high values means that competition does little to improve things. On
the other hand, lotteries are perfectly suited to this example since they allow us
to screen agents based on the strength of their preferences between the two items.
Essentially, randomization lets us add a “new item” to our offerings, which is really
a (1/2, 1/2) chance on the two items. Agents with low values place a low value on
this item; agents with exactly one high value place an intermediate value on this item.
Thus, we can place a low price on the lottery to serve the former agents, and yet still
sell items outright to the latter agents at an increased price. This improved market
segmentation leads to the revenue increase that we shall shortly see.

Consider the optimal revenue in the setting Ireps. If we relax the feasibility
constraint so that we may serve both reps at once, we can only improve the optimal
revenue. On the other hand, this relaxation means that allocation decisions for the
two reps can be made independently, so the optimal mechanism just offers each rep
a fixed price for service. Note, however, that by our choice of distribution, any price
achieves expected revenue of at most 1. Thus, we can upper bound the revenue of
the optimal mechanism for the setting Ireps by 2. The same argument also shows
that the revenue from an optimal item pricing in the setting I is also upper bounded
by 2.

We now proceed to give a lottery system that achieves expected revenue strictly
exceeding 2. Consider the following lottery pricing L for I:

L =

{(
1
2

, 1
2

, 3
2

)
,
(

1, 0, H+ 1
2

)
,
(

0, 1, H+ 1
2

)}
.

The first two coordinates in every lottery denote the probabilities with which items
1 and 2 are offered by that lottery and the third coordinate is the price. So this
corresponds to putting a price of (H+ 1)/2 on each item, as well as offering a lottery
that allocates each item with probability 1/2 at a price of 3/2. Then we can see that
if the agent values exactly one of the items at H, they will buy that item outright; if
they value both items at 1, they will buy nothing; and otherwise, they will buy the
lottery. Thus, with probability 3/4, the agent makes a purchase; and with probability
2/H(1 − 1/H) they choose to buy an item outright. The expected revenue will be

3
4
· 3

2
+

(
H+ 1

2
−

3
2

)
2
H

(
1 −

1
H

)
=

17
8

−
3
H

+
2
H2 ,



www.manaraa.com

99

which is strictly greater than 2 for H = 24.
We now give a generalization of the above example to continuous distributions,

and show that the gap in expected revenues increases to a factor of 1.13. The new
instance I is defined as follows. There is still a single agent with i.i.d. valuations for
two items; now the items’ values are distributed according to a continuous equal-
revenue distribution bounded at H. Formally, the valuations v1 and v2 for items 1
and 2 have distributions F1 and F2 such that

F1(x) = F2(x) =

1 − 1/x 1 6 x < H; and

1 x = H.

R2

R3

R1

v2

v1
1 n

1

n

4

4

3n/4

3n/4

n/4 + 1

n/4 + 1

Figure 5.2: The allocation function for the lottery pricing L.

Note that the distributions are regular. They also have the property that every
fixed price yields expected revenue of at most 1. Thus, as in the previous example,
we can think of relaxing the feasibility constraint to allow simultaneous allocation
to both reps (or of both items) to get an upper bound of 2 on the expected revenue
of any mechanism for the single-parameter setting Ireps (or for any item pricing for
the setting I).

The lottery system we consider for this new setting again consists of a price for
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each item, plus a lottery that gives an equal chance between the items:

L =

{(
1
2

, 1
2

, 5
2

)
,
(

1, 0, 2 +
3H
8

)
,
(

0, 1, 2 +
3H
8

)}
.

Figure 5.2 shows the allocation function of this lottery pricing. In particular, Ri
for i = 1, 2, 3 is the set of valuations where lottery i is bought. The probability mass
of regions R2 and R3 together can be computed to be 8/3H−o(1/H). The probability
mass of region R1 is 2/5 + (ln 16)/25 − o(1). Therefore, the revenue of L can be
computed to be 2 + (ln 4)/5 − o(1) ≈ 2.277 − o(1). This is a factor of 1.13 higher
than the optimal revenue for Ireps, or the revenue of any item pricing for I.

5.5 Conclusions and open problems

In this work, we studied the gap between the revenues of the optimal deterministic
and randomized mechanisms for multi-parameter settings with unit-demand agents,
and showed that this gap is small when agents’ values for different items are inde-
pendent. Our results extend to a limited form of positive correlation between item
values. Several open problems remain. Our bounds on the benefit of randomness
are in some cases quite large (although always independent of the parameters of the
instance) and we believe they can be improved. For example, in the case of a single-
agent, we bound the gap by 4, while the largest gap example known only shows
an improvement of approximately 1.13. It would also be interesting to extend our
bounds to more general forms of correlation between item values, while avoiding
the unbounded gap that Briest et al. (2010) achieve. Another direction of interest is
to develop an understanding of special classes of randomized mechanisms, such as
those in which the number or the kinds of lotteries offered is restricted.
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6 Settings with budget-constrained
agents
Auction and mechanism design have for the most part focused on agents with
quasilinear utility functions: each agent is described by a function that assigns
values to possible outcomes, and the agent’s utility from an outcome is her value
minus any payment that she makes to the mechanism. This implies, for example,
that an agent offered an outcome at a price below her value for the outcome should
in the absence of better alternatives immediately accept that outcome. This simple
model fails to capture a basic practical issue—agents may not necessarily be able to
afford outcomes that they value highly. For example, most people would value a
large precious stone such as the Kohinoor diamond at several millions of dollars
(for its resale value, if not for personal reasons), but few can afford to pay even
a fraction of that amount. Many real-world mechanism design scenarios involve
financially constrained agents and values alone fail to capture agents’ preferences.
Budget constraints have frequently been observed in FCC spectrum auctions Brusco
and Lopomo (2009); Che and Gale (1998), Google’s auction for TV ads Nisan et al.
(2009), and sponsored search auctions, to take a few examples.

From a theoretical viewpoint, the introduction of budget constraints presents a
challenge in mechanism design because they make the utility of an agent nonlinear
and discontinuous as a function of the agent’s payment—the utility decreases linearly
with payment while payment stays below the budget, but drops to negative infinity
when the payment crosses the budget. The assumption of linearity in payments (i.e.
quasilinearity of utility) underlies much of the theoretical framework for mechanism
design. Consequently, standard mechanisms such as the VCG mechanism can no
longer be employed in settings involving budgets.

The goal of this chapter is to develop connections between budget-constrained
mechanism design and the well-developed theory of unconstrained mechanism
design. Specifically we ask “when can budget-constrained mechanism design be
reduced to unconstrained mechanism design with some small loss in performance?”
We consider this question in the context of the two most well-studied objectives in
mechanism design—social welfare and revenue. Some of our results assume that
the mechanism knows the budgets of the agents, but others hold even when budgets
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are private and agents need to be incentivized to reveal them truthfully.
Recent work in computer science has begun exploring a theory of mechanism

design for budget-constrained agents (see, for example, Abrams (2006); Borgs et al.
(2005); Dobzinski et al. (2008); Chen et al. (2010); Alaei et al. (2010)). Most of this work
has focused on prior-free or worst-case settings, where the mechanism designer has
no information about agents’ preferences. Unsurprisingly, the mechanism designer
has very little power in such settings, and numerous impossibility results hold. For
example, in the worst-case setting no truthful mechanism can obtain a non-trivial
approximation to social welfare Borgs et al. (2005). The goal of achieving good social
welfare has therefore been abandoned in favor of weaker notions such as Pareto
optimality Dobzinski et al. (2008). For the revenue objective while approximations
can be achieved in simple enough settings, e.g. multi-unit auctions Borgs et al. (2005),
hardness results hold for more general feasibility constraints even in the absence
of budgets. In this work, we sidestep these impossibility results by considering
Bayesian settings where the mechanism designer has prior information about the
distributions from which agents’ private values and private budgets are drawn.

We restrict our attention to direct revelation truthful mechanisms. Our mecha-
nisms are allowed to randomize, and agents’ utilities are computed in expectation
over the randomness used by the mechanism. As is standard, we assume that both
the mechanism and the agents possess a common prior from which values are
drawn. While we optimize over the class of Bayesian incentive compatible (BIC)
mechanisms, all of the mechanisms we develop are dominant strategy incentive
compatible (DSIC) (see, for example, Nisan (2007) for definitions of these solution
concepts).

In addition, we require that our mechanisms satisfy the ex-post individual
rationality (EPIR) constraint, namely that the payment of any agent never exceeds her
value for the mechanism’s outcome. This implies, in particular, that the mechanism
cannot charge any agent to whom no item or service is allocated. In contrast, most
previous work has enforced the individual rationality constraint only in expectation
over the mechanism’s randomness as well as the randomness in other agents’ values
(i.e. interim IR).

It is worth noting here that the EPIR constraint is not without loss in performance.
Consider the following example: suppose we are selling a single item to one of n
agents, each with a value of v with probability 1 (that is publicly known) and a
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public budget of v/n with probability 1. Now, under the IIR constraint, the optimal
auction asks agents to pay what they bid and offers each agent that pays at least
v/n a fair chance at winning the item. Each agent pays v/n, the item is allocated
to a random agent, and the mechanism’s revenue is v. Under the EPIR constraint,
however, a mechanism can only charge the agent that wins the item and can charge
this agent no more than v/n. As we can see, the revenue gap between the optimal
IIR and the optimal EPIR mechanism gets larger and larger as n grows.

It is well known that over the class of BIC IIR mechanisms, the revenue-optimal
as well as welfare-optimal mechanisms are both so-called “all-pay” auctions Maskin
(2000); Pai and Vohra (2008). In all-pay auctions agents pay the mechanism a certain
(distribution dependent) function of their value regardless of the allocation that
the mechanism makes. The optimality of all-pay auctions follows by noting that
any allocation rule that admits some BIC budget-feasible payment function can
be implemented with an all-pay payment rule with worst-case payments that are
no larger than those in any other truthful payment rule and are therefore budget-
feasible. Unfortunately all-pay auctions have many undesirable properties. In many
settings it is simply not feasible to force the agents to pay upfront without knowing
the outcome of the mechanism. Moreover all-pay auctions may admit many Bayes-
Nash equilibria (BNE), truthtelling being merely one of them. Then the fact that
a certain objective is achieved when all the agents report their true types does not
necessarily imply that the objective will be achieved in practice if a different BNE
gets played out. Therefore, in a departure from previous work, we choose to enforce
ex-post individual rationality.

6.1 Maximizing revenue

We first consider the revenue objective, and begin by characterizing the optimal
budget feasible mechanism for a single agent setting. The characterization relies
on describing the mechanism as a collection of so-called lotteries or randomized
pricings. We then consider settings with public budgets. Our general approach
towards budget-constrained mechanism design in these settings is to approximate
the optimal revenue in two parts: the contribution to optimal revenue by agents
whose budget is binding (i.e. their budget is less than their value), and the contribu-
tion by agents whose budget is not binding (i.e. their budget is above their value).
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We present different mechanisms for approximating these two benchmarks. We
demonstrate this approach first in the simple setting of single-parameter agents with
public budgets and an arbitrary downwards closed feasibility constraint. Then in
subsequent sections we extend the approach to settings involving more complicated
incentive constraints—multi-dimensional values and private budgets. In private
budget settings, instead of asking agents to reveal budgets directly, our mechanism
once again relies on collections of lotteries to motivate agents to pay a good fraction
of their budgets when their values are high enough.

6.1.1 Single agent settings with public budgets

Before presenting our general approach, we first consider the most basic version
of this problem—namely a setting with one single-parameter agent and a public
budget constraint. Even this simple setting, however, reveals the challenges budget
constraints introduce to the problem of mechanism design. Without the budget
constraint, the optimal mechanism is to offer the item at a fixed price. With budgets,
however, the following example shows that a single fixed price can be a factor of 2
from optimal. After the example we proceed to characterize the optimal mechanism.

Example 6.1. Fix n > 1. Consider an agent whose value for receiving an item is v = 1
with probability 1 − 1/n, and is v = n2 with probability 1/n. Let the agent have a budget
of B = n. Any single fixed price that respects the budget in this setting receives a revenue of
at most 1.

We now describe the optimal mechanism. The mechanism offers two options to the agent:
either buy the item at price n, or receive the item with a probability of n/(n+ 1) at a price
of n/(n+ 1). This generates an expected revenue of 2n/(n+ 1) = 2 − o(1).

The optimal mechanism in the above example is what we call a lottery menu
mechanism. A lottery is a pair (q,p) and offers to the agent at a price p a probability
q of winning. A lottery menu is a collection of lotteries that an agent is free to
choose from in order to maximize his expected utility. We will now show that for
any single agent setting with a public budget, the optimal mechanism is a lottery
menu mechanism with at most two options.

Consider a setting I with a single agent with private value v ∼ F and a public
budget B. Let φ be the virtual value function corresponding to F. For ease of
exposition, throughout the following discussion we will assume that F is regular



www.manaraa.com

105

and φ is non-decreasing; when F is non-regular, we can merely replace φ by φ̄, the
ironed virtual value, in the following discussion.

We first note that if B > φ−1(0) then the unconstrained optimal mechanism
is already budget feasible. Therefore, for the rest of this section we assume that
B < φ−1(0). Using Myerson’s theorem relating revenue to virtual values (see Propo-
sition 2.3 in Section 2.3), our goal is to solve the following optimization problem.

max
q

∫
q(v)φ(v)f(v)dv subject to∫
(qmax − q(v))dv 6 B · qmax, and,

q(v) is a non-decreasing function.

Here qmax 6 1 is the probability of allocation at the upper end of the support of the
value distribution. The first constraint encodes the budget constraint. In particular,
the left hand side of the inequality is the expected payment made by the agent at
his highest value; the right side is an upper bound on the expected payment under
EPIR because the agent can pay a maximum of B when he gets allocated, and 0
otherwise.

Let q∗ be the optimal solution to the above optimization problem. We make
the following observations (proofs are deferred to the end of this subsection in the
interests of readability). In the following, we denote the inverse virtual value of 0 as
v∗ = φ−1(0) to simplify notation.

Claim 6.2. Without loss of generality, we may assume q∗max = 1.

Claim 6.3. Without loss of generality, we may assume that for all v > v∗, q∗(v) = 1.

Following these claims, our optimization problem changes to the following (the
monotonicity constraint on q is implicit).

max
q

∫
q(v)φ(v)f(v)dv subject to∫
(1 − q(v))dv 6 B

q(v) = 1 ∀v > v∗
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This can be simplified to:

min
q

∫v∗
0
q(v)(−φ(v)f(v))dv subject to∫v∗

0
(1 − q(v))dv = B

Note that we replace the inequality in the budget constraint with an equality. This is
because if the constraint is not tight, we can feasibly reduce q(v) and thereby reduce
the objective function value. For the sake of brevity, we define B ′ = v∗ − B, and
g(v) = −φ(v)f(v). The budget constraint then changes to

∫v∗
0 q(v)dv = B

′. Note that
v∗ > B ′ > 0, and g is nonnegative on [0, v∗]. Finally, we define the set of allocations

A =

{
increasing q : [0, v∗]→ [0, 1]

such that
∫v∗

0 q(v)dv = B
′

}

Then, we can express our objective as

min
q∈A

∫v∗
0
q(v)g(v)dv.

If g is non-increasing on [0, v∗], then we immediately have that the optimal
solution is to set q(v) = 1 if v > v∗ − B ′ (= B) and 0 otherwise.

If g is not non-increasing, we “iron” the function g to produce a non-increasing
function ĝ with the property that any non-decreasing function q that is constant
over intervals where ĝ is constant has the same integral with respect to ĝ as with
respect to g. Let Ã be the subset of A containing all functions q that are constant
over intervals where ĝ is constant. We obtain the following lemma. (The details of
the ironing procedure and the proof of the following lemma can be found at the
end of this subsection, along with deferred proofs.)

Lemma 6.4. For allq ∈ A, there exists q̃ ∈ Ã such that
∫v∗

0 q(v)g(v)dv >
∫v∗

0 q̃(v)g(v)dv.

The lemma lets us confine our optimization to the set Ã:

min
q∈A

∫v∗
0
q(v)g(v)dv = min

q∈Ã

∫v∗
0
q(v)g(v)dv
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Finally, we define A∗ to be a subset of Ã in which functions q take on at most three
different values – 0, 1, and an intermediate value. The final part of our proof is to
show that the optimal solution lies in this set.

Theorem 6.5. For any single agent setting I = (F,B), there is an optimal mechanism with
allocation rule in the set A∗.

Proof. Recall that the optimal solution q∗ lies in the set Ã. Suppose for contradic-
tion that this function takes on two different intermediate values, q∗(v1) = y and
q∗(v2) = z, between 0 and 1 with y < z. Then, since ĝ is non-increasing and q∗ is
non-decreasing, we must have ĝ(v1) > ĝ(v2). Now we can improve our objective
function value by increasing q∗ between v2 and the value at which it becomes 1, and
decreasing q∗ between the value at which it becomes strictly positive and v1, while
maintaining the budget constraint. This contradicts the optimality of q∗.

Deferred proofs and the ironing procedure. Here we present the proofs and
ironing procedure omitted from earlier in this section. We first give the proofs of
two claims regarding the revenue-optimal allocation rule q∗ for this setting.

Proof of Claim 6.2. Suppose that q∗max < 1, and consider setting q̂(v) = q∗(v)
q∗max

. Then
we have that q̂max = 1 and∫

(q̂max − q̂(v))dv =
1
q∗max

∫
(q∗max − q

∗(v))dv 6 B.

Furthermore q∗ must yield a nonnegative objective value (since q(v) = 0 is also
valid solution). Thus, we get that∫

q̂(v)φ(v)f(v)dv >
∫
q∗(v)φ(v)f(v)dv,

and so q̂ only improves upon q∗.

Proof of Claim 6.3. Suppose that q∗(v∗) < 1, and consider setting q̂(v) = q∗(v) for
v < v∗ and q̂(v) = 1 otherwise. Then we have∫

(1 − q̂(v))dv 6
∫
(1 − q∗(v))dv.
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Furthermore,∫
q̂(v)φ(v)f(v)dv =

∫
v6v∗

q∗(v)φ(v)f(v)dv+

∫
v>v∗

φ(v)f(v)dv

>
∫
v6v∗

q∗(v)φ(v)f(v)dv+

∫
v>v∗

q∗(v)φ(v)f(v)dv

=

∫
q∗(v)φ(v)f(v)dv,

since φ(v) > 0 for v > v∗. This contradicts the optimality of q∗.

We now proceed to give the ironing procedure previously mentioned in greater
detail. Recall that our goal is to find an optimal solution to

min
q∈A

∫v∗
0
q(v)g(v)dv, where

A =

{
increasing q : [0, v∗]→ [0, 1]

such that
∫v∗

0 q(v)dv = B
′

}
.

The solution to the above is a simple step function if g is non-increasing; however, if g
is not non-increasing, we need to “iron” the function g to produce a non-increasing
function ĝ. Let G(v) =

∫v
0 g(t)dt; Ĝ(v) be the convex upper envelope of G; and

ĝ = d
dv
Ĝ(v). We will find it useful to focus on a subset of allocation functions that

are compatible with the ironed ĝ in that they are constant on ironed regions. Given
any v such that G(v) 6= Ĝ(v), define

v = sup{v ′ 6 v : G(v ′) = Ĝ(v ′)}, and

v̄ = inf{v ′ > v : G(v ′) = Ĝ(v ′)}.

Then [v, v̄] is the ironed region containing v. Now, given any q ∈ A, we define the
modified allocation function q̃ by

q̃(v) =

q(v) if G(v) = Ĝ(v); and
1
v̄−v

∫v̄
v
q(t)dt if G(v) 6= Ĝ(v),

Note that q̃ ∈ Ã.
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We break the proof of Lemma 6.4 into the chain of comparisons∫v∗
0
q(v)g(v)dv >

∫v∗
0
q(v)ĝ(v)dv =

∫v∗
0
q̃(v)ĝ(v)dv =

∫v∗
0
q̃(v)g(v)dv.

We formalize each of these relations in a lemma; first, however, we state a fact
that will be useful in their proofs.

Fact 6.6. For any fixed q ∈ A, and for any interval (a,b) such that G(v) = Ĝ(v) for all
v ∈ (a,b), we have that ∫b

a

q(v)g(v)dv =

∫b
a

q(v)ĝ(v)dv.

We now proceed with proving the lemmas.

Lemma 6.7. For any q ∈ A, we have that
∫v∗

0 q(v)g(v)dv >
∫v∗

0 q(v)ĝ(v)dv.

Proof. By Fact 6.6, we know we need only focus on regions where ĝ is ironed. So let
v be such that G(v) 6= Ĝ(v), and consider the interval [v, v̄].

By our definition of Ĝ(v), we know that for any v ′ ∈ [v, v̄] we have

∫v ′
v

g(t)dt 6
∫v ′
v

ĝ(t)dt,

with equality if and only if v ′ = v or v ′ = v̄. This implies the following. Let

γ =

∫ v̄
v

g(t)dt =

∫ v̄
v

ĝ(t)dt;

then bothG(·)/γ and Ĝ(·)/γ are distributions on (v, v̄), and the former stochastically
dominates the latter. As such, since q(·) is monotone increasing, we must have that
the expectations of q(·) under these two distributions are related as∫ v̄

v

q(t)
g(t)

γ
dt >

∫ v̄
v

q(t)
ĝ(t)

γ
dt ⇐⇒

∫ v̄
v

q(t)g(t)dt >
∫ v̄
v

q(t)ĝ(t)dt.

Since the claimed relation holds on ironed intervals as well, we may conclude that
it holds overall.

Lemma 6.8. For any q ∈ A, we have that
∫v∗

0 q(v)ĝ(v)dv =
∫v∗

0 q̃(v)ĝ(v)dv.
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Proof. First, note that by our definition of q̃, we know that q̃(v) = q(v) whenever
G(v) = Ĝ(v). This means we once again need only consider ironed regions. Let v be
such that G(v) 6= Ĝ(v), and consider the interval [v, v̄]. Now, we know that on (v, v̄),
ĝ(·) takes on the constant value ĝ(v). So we have that∫ v̄

v

q(t)ĝ(t)dt = ĝ(v)

∫ v̄
v

q(t)dt = ĝ(v)(v̄− v)q̃(t) =

∫ v̄
v

q̃(t)ĝ(t)dt,

and the claim follows.

Lemma 6.9. For any q̃ ∈ Ã, we have that
∫v∗

0 q̃(v)ĝ(v)dv =
∫v∗

0 q̃(v)g(v)dv.

Proof. Once again, Fact 6.6 implies we know we need only focus on regions where ĝ
is ironed. So let v be such that G(v) 6= Ĝ(v), and consider the interval [v, v̄]. Then
we know that q̃(·) is constant on the interval (v, v̄). Thus,∫ v̄

v

q̃(t)ĝ(t)dt = q̃(v)

∫ v̄
v

ĝ(t)dt =

∫ v̄
v

q̃(t)g(t)dt,

and the result follows.

6.1.2 Single parameter setting with public budgets

We now consider single parameter settings with multiple agents. Let I = (F, S, B) be
an instance of single-parameter budget-constrained revenue maximization. Define
the truncated distributions F̂i as follows.

F̂i(v) =

Fi(v) if v < Bi; and

1 if v > Bi.
(6.1)

Let Î = (F̂, S) be the modified setting where we replace F with F̂ — note that for
each i, the support of F̂i ends at or before Bi, and so we may remove the budgets
since they place no constraint on the instance Î.

A mechanism for Î naturally extends to I, while satisfying budget feasibility and
obtaining the same revenue. Our general technique will be to relate the revenue of
a mechanism for I to that of a mechanism for Î. In general, the latter can be quite
small, and so we introduce the following quantity to bound this loss. Define the set
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B as
B = argmax

S∈S

{∑
i∈S Bi

∣∣ ∀i ∈ S, vi > Bi
}

. (6.2)

Our basic approach is to design a BIC mechanism M̂ for the setting Î based on the
original mechanismM such that we have

RM 6 RM̂ + E
[∑

i∈B Bi
]

. (6.3)

Then, the first term on the right is bounded above by the revenue of the optimal
mechanism for Î. We further demonstrate in each case that we can bound the
expectation E

[∑
i∈B Bi

]
by another mechanism for Î.

We define the mechanism M̂ in terms of its expected allocation and payment. Let
x(v) and p(v) be the expected allocations and expected payments forM, respectively.
Define the expected allocation and expected payment rules for M̂ as follows. For
each agent i in the setting Î with valuation v̂i, draw a corresponding vi consistent
with v̂i = min(vi,Bi); in this case that simply means vi = v̂i if v̂i < Bi, and
vi ∼ Fi(v | v > Bi) otherwise. Then M̂’s expected allocation and payment are given
by

x̂i(v̂) = xi(v−i, v̂i); and p̂i(v̂) = pi(v−i, v̂i),

respectively.

Lemma 6.10. M̂ is a feasible BIC mechanism for Î.

Proof. We first note that from the point of view of a single agent i, the expected
allocation and price function of M̂ behave as though other agents’ values are the
same as before. Therefore, the expected allocation is still an increasing function of
value and the payments satisfy BIC. We will now argue that the expected allocation
function can be implemented in a way that the resulting outcome is a randomization
over feasible outcomes. To do so, we first compute xi(v), as well as x̂i(v̂) for all i.
Starting with the allocation returned by x(v), for every agent i in this allocation, with
probability x̂i(v̂)/xi(v), we serve this agent, and with the remaining probability we
remove her from the allocated set. Since S is a downward closed feasibility constraint,
feasibility is maintained, and we achieve the target allocation probabilities. We
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remark here that our goal is to merely exhibit that M̂ is feasible and not to actually
compute it.

We now prove the bound (6.3) on RM.

Lemma 6.11. Given any mechanismM for I = (F, S, B), where S is downward-closed, if
we define the mechanism M̂ for Î as above, then (6.3) holds.

Proof. In order to prove the statement, we couple the values v that M̂ draws for
each v̂ with the v in the other expectations. So fix some corresponding pair of value
vectors v and v̂; consider the contribution of each agent i to the revenue of M. Split
the agents into two sets L and H, defined by

L = {i|vi 6 Bi}; and H = {i|vi > Bi}.

Recall that for all i ∈ L, we have that vi = v̂i, and so p̂i(v̂) = pi(v−i, v̂) = pi(v).
Furthermore, sinceM faces the downward-closed feasibility constraint S, any subset
of H thatM serves is one of the sets B maximizes over. SinceM can never charge
any agent more than their budget, we can see that

RM(v) =
∑
i∈L

RMi (v) +
∑
i∈H

RMi (v) 6
∑
i∈L

RM̂i (v̂) +
∑
i∈B

Bi 6 RM̂(v̂) +
∑
i∈B

Bi.

Taking expectations on both sides (according to the previously mentioned coupling)
proves the claim.

Note that RM̂ can be easily achieved by simply running the (unconstrained)
revenue-optimal mechanism over Î. It remains to be shown that we can, in fact,
upper bound E[

∑
i∈B Bi] also by the revenue of the same (unconstrained) revenue-

optimal mechanism over Î.

Lemma 6.12. There exists a mechanismMB for the setting Î such that Ev∼F
[∑

i∈B Bi
]
6

RMB .

Proof. We define the mechanismMB as implementing the allocation rule B. Note
that membership of i in B is monotone in vi, and that the truthful payment for i ∈ B

is precisely Bi, since this is the minimum value required for allocation. Thus, we
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can immediately see that

RMB = E
v̂∼F̂

[∑
i∈B

Bi

]
= E

v∼F

[∑
i∈B

Bi

]
,

as desired.

By combining the results of Lemmas 6.11 and 6.12, we get the following theorem.

Theorem 6.13. Given a single parameter setting I = (F, S, B), the optimal mechanism M

for the modified setting Î = (F̂, S) gives a 2-approximation to the optimal revenue for I.

6.1.3 Multi-parameter setting with public budgets

We next consider settings where a seller offers multiple kinds of service and agents
have different preferences over them. Agents are unit-demand and want any one
of the services; the seller faces a general downward closed feasibility constraint.
As before, we use the tuple I = (F, S, B) to denote an instance of this problem;
throughout, i indexes agents and j indexes services. Let S be a downward-closed
feasibility constraint over (i, j) pairs, and furthermore assume each agent i has a
budget Bi.

Ideally, we would like to follow the same approach as in the previous section.
We use the same basic benchmark, defining F̂ and B analogously to (6.1) and (6.2)
for the instance I. Note that here, B is a collection of (i, j) pairs; since agents are
unit-demand, however, we can also think of B as a set of agents. We can’t apply
the same reduction from M to M̂ directly, however, because truncating each of a
multi-parameter agent’s values to their budget affects the agents’ preferences across
different items, a concern we did not have before.

Instead, we make use of the reduction from multi-parameter Bayesian MD to
single-parameter Bayesian MD we presented in Chapter 4. We now describe how to
modify the reduction to accomodate budgets. Specifically, starting with a budget
feasible mechanismM for I, we first follow the approach of Chapter 4 and convert it
into a mechanismM ′ for Ireps with the same allocation rule as forM. Unfortunately,
M ′ is not necessarily budget feasible, since the allocation rule ofMmay induce larger
payments in the single-parameter setting Ireps. We therefore modify the mechanism
so that any representative in Ireps offered service at a price larger than his budget is
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dropped from the allocated set. This makesM ′ budget feasible. We then apply the
approach of the previous section to construct a mechanism M̂ for the instance Îreps

based on the modifiedM ′.
Finally, we note that any sequential posted price mechanism for the setting Îreps

is necessarily budget-feasible for the setting I because in Îreps values do not exceed
budgets. We thus can apply the approximately-optimal posted-pricing we obtain
via the techniques of Chapters 3 and 4 unchanged to the original setting I. We call
this final mechanism S.

Lemma 6.14. Consider a multi-parameter setting I = (F, S, B), and let α denote the
approximation to revenue that an appropriately chosen S achieves in this setting. Then for
any deterministic budget feasible mechanismM, the mechanism S defined above satisfies

RS > 1/αE
v

[∑
i∈L

RMi (v)

]

and consequently,

RM 6 αRS + E
v∼F

[∑
i∈B

Bi

]
.

Proof. We first note that the revenue that M ′ derives from the agents in L is no
smaller than the revenue thatM derives from these agents because payments for
these agents never exceed their budgets. Following the analysis of Lemma 6.11, we
further conclude that the revenue of M̂ is an upper bound on the contribution of
agents in L to RM. Finally, the statement of the lemma implies that the revenue of
the mechanism S is at least as large as a 1/α fraction of RM̂. This proves the first
part of the lemma. The second statement follows along the lines of the proof of
Lemma 6.11.

Finally, we show how to approximate the benchmark E[
∑
i∈B Bi] in the multi-

parameter setting.

Lemma 6.15. If S is a matroid set system, there exists a mechanismMB for the setting Î

such that Ev∼F
[∑

i∈B Bi
]
6 2RMB .

Proof. We begin by noting that the unit-demand constraint on agents is precisely
a partition matroid; furthermore, taking a subset of a matroid induces a matroid.
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Hence for any fixed v, our objective
∑
i∈B Bi is precisely a maximum weighted set

in the intersection of two matroids. Note that each (i, j) that is a valid element of B
corresponds to an agent iwho would be willing to pay a price of Bi for service j.

Our proposed mechanismMB sequentially approaches each agent in order by
decreasing Bi, and offers them all services that are still feasible under S (based on
previous decisions by agents), at a price of Bi. Then our revenue is the weight of a
greedily selected independent set in the matroid intersection B is optimal over; by
Theorems 1.1 and 3.2 of (Korte and Hausmann, 1978), this set’s weight is at least 1/2
that of B. Note that as a sequential posted pricing, the mechanism is immediately
truthful; taking expectations over v yields the claimed revenue bound.

Combining Lemmas 6.14 and 6.15 immediately gives us the following theorem.

Theorem 6.16. Let I = (F, S, B) be an instance with multi-parameter, unit-demand agents
and S being a matroid or simpler feasibility constraint. Then, there exists a polynomial time
computable mechanism for Î that is budget feasible and DSIC for I and obtains a constant
fraction of the revenue of the optimal budget-feasible mechanism for I.

6.1.4 Private budgets

We next consider settings where budgets are part of agents’ private types, but where
the mechanism designer knows the distributions from which budgets are drawn.
We assume that values and budgets are drawn from independent distributions. We
focus on settings where agents’ values are single-dimensional.

Let I = (F, S, G) denote an instance of this setting. We follow a similar approach
as for public budgets. Switching from public to private budgets, however, adds new
complexity; in particular it becomes tricky to achieve our benchmark E[

∑
i∈B Bi] in

general. In this section, we present an approximately optimal mechanism for the
case when each distribution in F satisfies the MHR condition (see Definition 2.2 in
Section 2.3). As with the public budgets case, we begin by considering the single
agent case, and then show how to extend our results to more general multi-agent
cases.

Given a pair of value and budget vectors, we consider the “extractable value” of
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an agent i to be min(vi,Bi); we modify our definition of B to reflect this:

B = argmax
S∈S

∑
i∈S

min(vi,Bi).

Similarly to the public budgets case, our approach is to split the revenue of an
arbitrary mechanism into two terms, which (loosely speaking) look like revenue in
a truncated value setting, and the sum of the budgets in B; we then demonstrate a
lottery menu mechanism whose revenue upper bounds both of these terms.

6.1.5 Single agent settings with private budget

We begin by considering the case of a single agent with a private budget. A key idea
will be the “extractable value” of the agent, which we will define to be min(v,B).
The idea behind focusing on this is that value and budget function similarly in terms
of how they limit the revenue that can be achieved – both upper-bound it. Recall
that, in settings where value are distributed according to an MHR distribution, we
know that the revenue and welfare objectives are quite close, in the sense that the
we can design mechanisms whose revenue gives a constant approximation to the
optimal welfare. We begin by recalling the following two theorems about MHR
distributions (both special cases of Theorem 3.11, Dhangwatnotai et al., 2010).

Theorem 6.17. If distribution F satisfies the MHR condition, then Ev∼F[v] 6 e · r∗(1 −

F(r∗)), where r∗ is the monopoly reserve price for F.

Theorem 6.18. If distribution F satisfies the MHR condition, then 1 − F(r∗) > 1/e, where
r∗ is the monopoly reserve price for F.

The first theorem, in fact, immediately captures our claim about revenue and
welfare for the case of a single agent, since r(1 − F(r)) is precisely the expected
revenue from offering a price r to an agent. The second theorem captures the fact
that MHR distributions can’t have overly long tails.

In the case where agents have budgets, we can no longer hope to obtain expected
revenue that approximates the optimal welfare in every case; for example, if the
budget happens to be deterministically 0, we cannot achieve any revenue no matter
how high the agent’s value for service is. As we shall see, however, we can extend
the above theorem to our setting by altering it to compare revenue with extractable
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value. In particular, by truncating both the value and the monopoly reserve price to
the budget, we get the following analogue of Theorem 6.17.

Lemma 6.19. If distribution F satisfies the MHR condition, then for any B > 0 we have
Ev∼F[min(v,B)] 6 e ·min(r∗,B)(1 − F(r∗)), where r∗ is the monopoly reserve price for F.

Proof. Observing that the expectation of the minimum of two terms can never exceed
the minimum of their respective expectations, we can see that

E
v∼F

[min(v,B)] 6 min( E
v∼F

[v],B) 6 min(e · r∗(1 − F(r∗)),B),

where the second inequality follows from Theorem 6.17. Recall, however, that by
Theorem 6.18 we have that e(1 − F(r∗)) 6 1. Thus, we may conclude that

E
v∼F

[min(v,B)] 6 e · (1 − F(r∗))min(r∗,B),

exactly as claimed.

The above echoes what we saw in the case of public budgets. If the budget
is above the monopoly price, then our optimal mechanism remains unchanged;
otherwise, we need to use the budget as a guide to forming our offers. As there,
lotteries will play a key role in extracting good revenue. Our proposed mechanisms
will be lottery pricings L(p) that are parameterized by a “target price” p. L(p)

contains, for all 0 6 α 6 2/3, a lottery that with probability (1/3 + α) allows the
agent to purchase service at a price of αp/2.

Note that the probability of allocation in the above lottery system rises faster
as a function of α than the price of the lottery does. This ensures that the agent is
willing to buy the most expensive lottery that he can afford. So, in particular, if all
lotteries bring positive utility, then the agent spends his entire budget – yielding
the maximum revenue that any mechanism can hope to achieve from the agent.
This powerful idea is what enables our approximation. We formalize this in the
following lemma.

Lemma 6.20. When an agent with v > p is offered the menu L(p), he purchases an option
yielding expected revenue at leastmin(p,B)/3.
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Proof. Consider the utility of an agent with value v when purchasing the lottery
with parameter α, which we denote uα(v). We can see that

uα(v) = (1/3 + α)(v− αp/2), and so
∂uα(v)

∂α
= v− (α+ 1/6)p > 0

when v > p. So we can see that an agent with value v > p will purchase the
lottery with the highest α value they can afford; since the lottery for α = 2/3 assigns
service with probability 1 at a price of p/3, and every lottery provides service with
probability at least one third, we can see that an agent will purchase a lottery yielding
revenue at least min(p,B)/3.

The key intuition behind the above lemma is that it says that we can think of
the lottery pricing L(p) as a “truncated” version of the price p; whenever an agent
without budget constraints would accept the price p, a budget-constrained agent
will choose an option from L(p) that gives revenue of min(p/3,B) when allocation
occurs. Note that this revenue guarantee closely matches the upper bound we
derived in Lemma 6.19, assuming we set p = r∗. We formalize this in the following
theorem, which is our main result of the section.

Theorem 6.21. Consider a single-agent instance I = (F,G) of the BSMD problem with
private budgets, where F satisfies the monotone hazard rate condition. The lottery pricing
L(r∗) provides a 3e-approximation to the optimal revenue for I.

Proof. Recall that any EPIR, budget-feasible mechanism for I can never charge the
agent more than min(v,B). Thus, Ev,B[min(v,B)] upper bounds the optimal revenue.
Now, consider fixing some budget B. By combining Lemmas 6.19 and 6.20, we get
that

E
v
[RL(r∗)(v,B)] > (1/3)min(r∗,B)(1 − F(r∗)) > (1/3e)E

v
[min(v,B)].

Taking expectations on both sides with respect to B gives exactly the claimed bound.
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6.1.6 Multi-agent settings with private budgets

We focus on settings I = (F, S, G) where S is a downwards-closed set system, and
each distribution in F satisfies the MHR condition. As we shall see, the approach
we used for settings with a single agent will apply here as well with only minor
adjustments.

We begin with some definitions. Once again, we observe that no EPIR mechanism
can ever charge an agent a price for service that exceeds either the agent’s value or
their budget. Thus, we rewrite B in terms of the “extractable value” to reflect this
upper bound:

B = argmax
S∈S

∑
i∈S

min(vi,Bi).

Recall that in the previous section, we showed how to construct a lottery system
for a single agent that achieved revenue approximating the truncated welfare. In
this section, we extend the approach to multiple agents. Our general approach has
two parts. First, we observe that if we run the VCG mechanism for the truncated
setting in our original setting, it remains truthful and achieves optimal truncated
welfare. Second, we show that we can modify our lottery systems slightly so they
take the place of threshold payments in the VCG mechanisms; by doing so, we
achieve a mechanism whose revenue approximates the truncated welfare of the
VCG mechanism.

We begin by describing how we modify the lottery pricings. Here, our lottery
pricings L(p, p̄) are parameterized by both a minimum price p and a maximum
price p̄. There are two cases: if p > p̄/3, then L(p, p̄) contains the single fixed price
of p; otherwise, it contains, for all 2p/p̄ 6 α 6 2/3, a lottery that with probability
(1/3 + α) allows the agent to purchase service at a price of αp̄/2. These lottery
systems are a simple modification of those we used before. Starting with one of
those lotteries, we just remove every option with (ex post) price strictly below p; if
this removes every option in the lottery pricing, we switch to offering a fixed price
of p. The following lemma follows immediately from the above observations.

Lemma 6.22. An agent receives nonnegative utility from some option in L(p, p̄) if and
only if min(v,B) > p.

Furthermore, we get the following extension of Lemma 6.20
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Lemma 6.23. Let p = max(p, p̄). When an agent with v > p is offered the menu L(p, p̄),
the agent purchases an option yielding expected revenue at leastmin(p,B)/3.

We begin by noting the following more general form of Theorem 6.17 (which is
a restatement of Theorem 3.11, Dhangwatnotai et al., 2010).

Theorem 6.24. Given any t > 0, if F is an MHR distribution, we have that E[v|v >

t]Pr[v > t] 6 e · p(1 − F(p)), where p = max(t, r∗).

As in the previous section, the above has a natural extension to settings with
budgets

Lemma 6.25. For any t > 0 and any B > t, if F is an MHR distribution, we have that

E
v
[min(v,B)|v > t]Pr[v > t] 6 e ·min(p,B)(1 − F(p)),

where p = max(t, r∗).

Proof. Since moving an expectation inside of the min(·) operator can only cause an
increase in an expression’s value, we can see that

E
v
[min(v,B)|v > t]Pr[v > t] 6 min(E

v
[v|v > t]Pr[v > t],BPr[v > t])

6 min(e ·min(p,B)(1 − F(p)),B(1 − F(t)),

by applying Theorem 6.24. Now, either p = t or 1− F(p) = 1− F(r∗) > 1/e; in either
case, however, we have that 1 − F(t) 6 e(1 − F(p)) and so the claim follows.

The mechanism ML we propose serves (a subset of) the set B. For each i,
let Ti be the threshold corresponding to inclusion in B, i.e. Ti = min{v ′ : i ∈
B for ((v−i, v ′), (B−i, v ′))}. Our mechanism offers the lottery system L(Ti,φi−1(0))
to agent i, where φ−1

i (0) is the monopoly price for i. We get the following theorem.

Theorem 6.26. For any setting I = (F, S, G) where S is a downwards-closed set constraint
and each distribution in F satisfies MHR, the mechanism ML is a 3e-approximation to the
optimal revenue.

Proof. We shall prove a stronger claim than that of the theorem statement, namely
thatML gives a 3e-approximation to our benchmark of Ev,B[

∑
i∈B min(vi,Bi)].
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Consider some agent i, and fix the values v−i and budgets B−i of all other agents.
Note that this fixes the threshold Ti as well. Now, for any Bi > Ti we may combine
Lemma 6.25 and 6.23 to get that

E
vi
[min(vi,Bi)|vi > Ti]Pr[vi > Ti] 6 emin(p,Bi)(1 − Fi(p))

6 3e E
vi

[
RL(Ti,φi−1(0))(vi,Bi)

]
,

where p = max(Ti,φi−1(0)). Noting that our lottery systems never make positive
transfers to the agents, we may take expectations with respect to Ti and Bi and
conclude that

E
vi,Bi,Ti

[min(vi,Bi)|vi,Bi > Ti]Pr[vi,Bi > Ti] 6 3e E
vi,Bi,Ti

[
RL(Ti,φi−1(0))(vi,Bi)

]
.

Recall, however, that i ∈ B if and only if vi,Bi > Ti by Lemma6.22, and that our
mechanism ML offers each agent i the lottery system L(Ti,φi−1(0)). Thus, if we
sum the above inequality over i, we get

E
v,B
[
∑
i∈B

min(vi,Bi)] 6 3eRML ,

exactly as desired.

6.2 Maximizing welfare

In this section we focus on the welfare objective. In particular, the seller’s goal is to
maximize the total value of the allocation in expectation. Once again we assume
that budgets are known publicly.

We first note that we cannot use the approach of the previous section as a
roadmap. Even with public budgets, truncating values to the corresponding budgets
does not work for the social welfare objective. In particular, the following example
shows it is possible for a budget feasible mechanism to distinguish between values
above the budget without exceeding the budget in payments.

Example 6.27. Consider an n agent single-item auction, where agents have i.i.d. values for
the item. Each agent has a budget of 1. Each agent’s value is 1 with probability 1 − 1/n and
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n with probability 1/n. Then a mechanism that simply truncates values to budgets cannot
distinguish between the agents and gets a social welfare of at most 2. On the other hand,
consider a mechanism that orders agents in an arbitrary order and offers two options to each
agent in turn while the item is unallocated: getting the item for free with probability 1/n
and nothing otherwise, or purchasing the item at a price of 1. Then, an agent picks the first
option if and only if her value is below n/(n− 1), and otherwise picks the second option. In
particular, an agent with value n always picks the second option, and an agent with value
1 always picks the first option. For large n, with probability approaching 1 − 1/e at least
one agent has value n, and with probability at least 1/e the item is unsold before the first
agent with value n is made an offer. The mechanism’s expected welfare is therefore at least
1/e(1 − 1/e)n = Ω(n).

Note that the precise choice of budgets in the above example was critical: if
budgets were any lower, the proposed mechanism would have been infeasible; and
if they were any higher, truncation would have still allowed for distinguishing
between agents with low and high values. This suggests considering bicriteria
approximations where we compete against an optimal mechanism that faces smaller
budgets. We first demonstrate a mechanism achieving an approximation of this
sort; we then show that our mechanism also gives a good approximation if we relax
the EPIR constraint to an IIR constraint, instead of relaxing budgets. Of course, our
ultimate goal is to provide a good approximation for the social welfare objective via
an EPIR budget feasible mechanism. While we are unable to do so in general, the final
section presents a constant factor approximation for settings where the distributions
Fi for every agent i satisfy the MHR condition (Definition 2.2 in Section 2.3).

6.2.1 A bicriteria approximation

Consider a setting I with budgets B. Let OPT ′ denote the EPIR mechanism that is
welfare-maximizing and feasible for budgets (1 − ε)B (i.e. where each budget is
scaled down by a factor of 1 − ε). We claim that we can approximate the welfare of
this mechanism while maintaining budget feasibility with respect to the original
budgets B.

Theorem 6.28. For a given instance I = (F, S, B), let I ′ be the instance (F, S, (1 − ε)B)
where each agent’s budget is scaled down by a factor of 1 − ε. Let OPT ′ denote the welfare
optimal budget feasible mechanism for I ′. Then, there exists an easy to compute ex post IR
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mechanism (namely, the VCG mechanism over a modified instance) that is budget feasible
for I and obtains at least an ε fraction of the social welfare of OPT ′.

Proof. We first use OPT ′ to construct a new mechanismM. M proceeds as follows.
It elicits values from agents. For all agents iwith vi > Bi, it resamples agent i’s value
from the distribution Fi restricted to the set [Bi,∞). Other values are left unchanged.
It then runs the mechanism OPT ′ on the resampled values. It is easy to see that M
is budget feasible valid for I ′.

We claim that the social welfare ofM is at least ε times the social welfare of OPT ′.
To prove the claim, consider a single agent i, and let qi1 denote the probability of
allocation for this agent in OPT ′ when her value is Bi, and qi2 denote the probability
of allocation for this agent in OPT ′ when her value is vmax

i (the agent’s maximum
possible value). Note that the expected payment that the agent makes at vmax

i is
at least (qi2 − qi1)Bi plus the payment she makes at Bi. Then, EPIR implies that
(qi

2 − qi
1)Bi is at most the budget (1 − ε)Bi times qi2. This implies qi2 < qi1/ε.

Now, noting that the value distributions for agents are unaltered by resampling,
it holds that for vi > Bi, the probability of allocation for agent i at vi under M is
equal to the expected probability of allocation for the agent under OPT ′ conditioned
on the agent’s value being in the range [Bi,∞). Since the probability of allocation
under OPT ′ for this range is always between qi1 and qi2, the expected probability of
allocation is at least qi1 > εqi2. So compared to those under OPT ′, the probabilities
of allocation under M are at most a factor of ε smaller. Therefore, the expected
social welfare ofM is also at most a factor of ε smaller than that of OPT ′.

Our goal will then be to approximate the social welfare ofM. Note that for every
agent i,M treats values aboveBi identically. We can therefore consider the following
optimization problem: for an instance I, construct a DSIC EPIR mechanism that
maximizes social welfare subject to the additional constraint that for every agent
i the mechanism’s (distribution over) allocation should be identical across value
vectors that differ only in agent i’s value and where agent i’s value is > Bi. For
any such mechanism, agent i’s expected contribution to social welfare from value
vectors with vi > Bi conditioned on being allocated is vi, where vi = E[vi|vi > Bi].
Therefore, the following mechanism maximizes welfare over the above class of
mechanisms: for every agent iwith vi > Bi, replace vi by vi; other values remain
unmodified; run the VCG mechanism over the modified value vector; charge every
agent the minimum of the payment returned by the VCG mechanism and their
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budget. It is easy to verify that this mechanism is DSIC, ex post IR, budget feasible
for the original budgets Bi, and obtains expected social welfare at least that ofM.
Therefore, it satisfies the claim in the theorem.

6.2.2 An interim IR mechanism

Next we note that it is in fact easy to remove the approximation on budget in the
above theorem if we are willing to give up on EPIR. In particular, consider an optimal
mechanism OPT on the instance I = (F, S, B). Then the above theorem implies the
existence of a mechanism V that is budget feasible for I ′ = (F, S, 2B) and obtains half
the welfare of OPT (taking ε = 1/2). Now consider the mechanism V ′ described as
follows. V ′ simulates V on the given value vector. Then for every agent i it charges
i half the payment charged by V and with probability 1/2 makes an allocation to i if
V makes an allocation to i. Agent i’s expected utility from any strategy under V ′

is exactly half her expected utility from the same strategy under V . Therefore, V ′

is DSIC. Moreover, it is budget feasible for the original budgets B since it always
charges half the payments in V . Its expected social welfare is exactly half that of V .
We therefore get the following theorem.

Theorem 6.29. For a given instance I = (F, S, B), let OPT denote the welfare optimal EPIR
budget feasible mechanism for I. Then, there exists an easy to compute IIR mechanism that
is budget feasible for I and obtains at least a quarter of the social welfare of OPT.

6.2.3 An ex-post IR mechanism for MHR distributions

As previously remarked, our ultimate goal is to provide a good approximation
for the social welfare objective via an EPIR budget feasible mechanism. We now
show that under an MHR condition on distributions, we can achieve precisely this
goal. In particular, we present a constant factor approximation for settings where
the distributions Fi for every agent i satisfy the MHR condition (Definition 2.2 in
Section 2.3).

Under the MHR condition, we can exhibit a close relationship between the welfare
and revenue of any mechanism. Using this relationship along with results from the
previous section, we can come up with a budget feasible approximately-revenue-
maximizing mechanism that also provides an approximation to social welfare. The
MHR condition is quite crucial to our approach. In fact our solution consists of two
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mechanisms, one of which charges no payments, and the other of which truncates
values to their corresponding budgets – approaches that don’t work for the example
we considered above.

Let v∗i = φi
−1(0) denote the monopoly price for the distribution Fi. We then get

the following bound on social welfare, which we are able to approximate.

Lemma 6.30. For any instance I = (F, S, B), if all the distributions Fi satisfy the MHR
condition, then for any non-decreasing allocation function x(v), we have that

∫
v

(∑
i

vixi(v)

)
dF(v) 6

∫
v

(∑
i

(φi(vi) + 2v∗i )xi(v)

)
dF(v).

In order to prove the Lemma, we require some new definitions and claims.
Consider a single agent with MHR distribution F, virtual value function φ, and
monopoly price v∗. Let φ+ and φ− be the positive and negative portions of φ
respectively; i.e. for all v, φ+(v),φ−(v) > 0 and φ(v) = φ+(v) −φ−(v). We can then
claim the following (the first is a restatement of Hartline and Roughgarden 2009,
Lemma 3.1).

Lemma 6.31. For a distribution F satisfying the MHR, all values v satisfy v 6 v∗+φ+(v) =

v∗ + φ(v) + φ−(v).

Lemma 6.32. For any monotone allocation function x(·),∫
φ−(v)x(v)dF(v) 6

∫
v∗x(v)dF(v).

Proof. We begin by recalling that the expected revenue of any BIC mechanism
is equal to its expected virtual surplus (see Proposition 2.3 in Section 2.3). Now
consider a mechanism for a single agent with value distribution F that always serves
the agent. Clearly the revenue of this mechanism is 0. So we get∫

v

(φ+(v) − φ−(v))dF(v) = 0,

which implies that ∫
v

φ+(v)dF(v) =

∫
v

φ−(v)dF(v).
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Second, the revenue from offering the agent the monopoly price v∗ is precisely
v∗(1 − F(v∗)). Therefore,∫

φ+(v)dF(v) =

∫∞
v∗
(φ+(v) − φ−(v))dF(v) = v∗

∫∞
v∗
dF(v),

where the first equality follows from regularity of F.
Note that the regularity of F implies that φ+ and φ− are identically 0 below and

above v∗, respectively. Now, from the above two equalities, we can see that if x is
monotone non-decreasing, then∫

φ−(v)x(v)dF(v) 6
∫
φ−(v)x(v∗)dF(v)

= x(v∗)

∫
φ+(v)dF(v)

= x(v∗)v∗
∫∞
v∗
dF(v)

6
∫
v∗x(v)dF(v);

the claim follows.

The proof of Lemma 6.30 follows immediately by combining Lemmas 6.31
and 6.32. The Lemma gives us the following approximation.

Theorem 6.33. Let I = (F, S, B) be an instance where all distributions Fi satisfy the MHR
condition. Then, one of the following mechanisms obtains a 2(1 + e)-approximation to the
social welfare of a welfare-optimal budget-feasible mechanism for I. Both of these mechanisms
are DSIC, EPIR and budget feasible.

• Mechanism 1: Always allocate to the set S∗1 and charge zero payments, where S∗1 =

argmaxS∈S
∑
i∈S v

∗
i .

• Mechanism 2: Elicit values from agents; for all i with vi > Bi, replace vi by Bi; run
Myerson’s mechanism on the resulting instance.

Proof. We begin by noting that an immediate consequence of Lemma 6.18 is that for
a distribution F satisfying the MHR, EF[v] > v∗/e.

Now, consider some budget feasible mechanismM for the instance I. Then by
Theorem 6.13, the optimal mechanism for the truncated distributions (6.1) obtains
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revenue, and therefore also social welfare, no less than a 1/2 fraction of the expected
revenue

∫∑
iφi(vi)xi(v)dF(v).

Moreover, we can see that
∫

v
∑
i v
∗
ix(v)dF(v) is upper bounded by

∑
i∈S∗ v

∗
i ,

where S∗ = argmaxS∈S
∑
i∈S v

∗
i . Then a mechanism which always allocates to

the set S∗ and charges no payments is budget feasible, DSIC, and obtains welfare∑
i∈S∗ EFi [vi] > 1/e

∑
i∈S∗ v

∗
i , where the inequality follows from Lemma 6.18. The

original claim follows.

6.3 Incentive compatibility for budgets

Let I = (F, S, G) be a mechanism design instance with single-parameter agents with
private budgets, and let M be a truthful mechanism for this setting. We get the
following characterization for the allocation and payment functions ofM.

Lemma 6.34. IfM is truthful, then for each i there exists some monotone function x̃i(v)
such that for each B, xi(v,B) has the form

xi(v,B) =

x̃i(v) if v < vB
x̃i(vB) if v > vB,

where vB is a monotone non-decreasing function of B, and the payment has the form

pi(v,B) = xi(v,B)v−
∫v

0
xi(t,B)dt.

Proof. For now, assume that xi(v,B) and pi(v,B) are continuous. Begin by fixing
some arbitrary budget B, and considering the truthfulness constraints on v. Just as
in the case where we have no budgets, truthfulness in reporting valuation implies
that xi(v,B) is monotone increasing, and payments are of the form

pi(v,B) = xi(v,B)v−
∫v

0
xi(t,B)dt;

so we need only show the claimed relation between allocation curves for different
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budgets. Denote the utility i receives by ui(v,B). Note by the above, we get that

ui(v,B) = xi(v,B)v− pi(v,B)

= xi(v,B)v−
(
xi(v,B)v−

∫v
0
xi(t,B)dt

)
=

∫v
0
xi(t,B)dt.

Begin by fixing some v, and considering two different budgets B and B ′ (without
loss of generality B < B ′). Since an agent with budget B ′ must be able to afford
any payment that an agent with budget B can, we know that ui(v,B ′) > ui(v,B).
Assume that ui(v,B ′) = ui(v,B); then we have that xi(v,B ′) = xi(v,B) as well.
Suppose not; without loss of generality, say xi(v,B ′) > xi(v,B). Then by continuity,
this holds on some neighborhood (v− δ, v+ δ) of v. But then we get that

ui(v− δ,B ′) =
∫v−δ

0
xi(t,B ′)dt

=

∫v−δ
0

xi(t,B)dt+
∫v
v−δ

xi(t,B) − xi(t,B ′)dt

< ui(v− δ,B),

a contradiction. A symmetric argument gives us that if xi(v,B ′) > xi(v,B), there is
some δ such that ui(v+ δ,B ′) < ui(v+ δ,B).

On the other hand, if ui(v,B ′) > ui(v,B), then we may conclude that pi(v,B ′) >
B (since otherwise an agent with budget Bwould have incentive to lie and report
B ′).

We can combine the above two observations to get the claimed characterization
as follows. Consider the revenue curve for the maximum possible budget B̂, and
for any other budget B. Then we know that at each v, either they are identical, or
the payment for budget B̂ exceeds that for budget B. By continuity, the last point
where they were identical must have had a corresponding price of B. After that
point, the allocation curve for B must remain constant, since any increase would
imply an increase in price.

While the above assumed that xi(v,B) was continuous, note that the function is
monotone and bounded. As such, it is continuous a.e., and so our characterization
holds a.e. for general xi(v,B).
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We now give an example showing that when budgets are private the E[
∑
i∈B Bi]

benchmark cannot be approximated merely by mechanisms for Î.
Consider trying to serve a single agent with a fixed value for service of v = 3n+1,

and a budgetB distributed according to the distributionG(B) = 1−1/B forB ∈ [1,n)
and G(n) = 1. If we consider the truncated value distribution, since we have a
single agent offering a fixed price is optimal; but any fixed price p gives revenue of
p(1 − F(p)) = 1. On the other hand, consider offering the agent the menu

{(1/4 + α, 2α2n) : α ∈ [0, 3/4]}.

Note that differentiating the agent’s utility as a function of α gives us

d

dα

(
(1/4 + α)(3n+ 1) − 2α2n

)
= 3n+ 1 − 4αn > 1

for α ∈ [0, 3/4], and so the agent always buys the most expensive lottery he or
she can. Prices on the menu range from 0 to 9n/8, and each offer is made with
probability at least 1/4; so this menu extracts revenue of at least E[B]/4 = Θ(logn).
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